In Vitro Evaluation for Antioxidant Activities of Culture Broth of Tremella fuciformis

흰목이 버섯 배양액의 항산화 활성 규명

  • Ra, Kyung-Soo (Department of Food and Nutrition, Daegu Technical College) ;
  • Choi, Jang-Won (Department of Bioindustry, College of Life & Environment, Daegu University)
  • 나경수 (대구공업대학 식품영양과) ;
  • 최장원 (대구대학교 바이오산업학과)
  • Received : 2009.11.14
  • Accepted : 2009.12.07
  • Published : 2010.02.28

Abstract

To investigate antioxidant activity of the culture broth from submerged culture of Tremella fuciformis, we preferentially analyzed the chemical composition of culture broth, which was mainly composed of carbohydrate (296.39 mg/g) and protein (9.24 mg/g), respectively. Also, contents of polyphenols, flavonoids and flavonols were 16.63 mg/g, 9.19 mg/g and 83.74 ${\mu}/g$, respectively. Next, we examined the scavenging abilities on DPPH (1,1-diphenyl-2-picrylhydrazyl) radical, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) radical, the reducing power, and chelating ability on ferrous ions. All antioxidant activities of the culture broth were increased in proportion to its concentrations. The $IC_{50}$ values were in order as follows ABTS radical scavenging activity < OPPH radical scavenging activity < chelating power. Accordingly, these results suggest that pharmacological function of T. fuciformis might be due to, at least partially, their protective effects against oxidation and the culture broth of T. fuciformis was free radical inhibitors or scavengers at low concentration, involving possibly in termination of free radical reaction as primary antioxidants.

Keywords

References

  1. Coyle, J. T. and P. Puttfarcken (1993) Stress, glutamate, and neurodegenerative disorders. Science. 262: 689-695. https://doi.org/10.1126/science.7901908
  2. Margaill, I., K. Plotkine, and D. Lerouet (2005) Antioxidant strategies in the treatment of stroke. Free Radic. Biol. Med. 39: 429-443. https://doi.org/10.1016/j.freeradbiomed.2005.05.003
  3. Diolock, A. T., J. L. Charleux, G. Crozier-Willi, F. J. Kok, C. Rice-Evans, M. Roberfroid, W. Stahl, and J. Vina-Ribes (1998) Functional food science and defense against reactive oxidative species. Br. J. Nutr. 80: 77-112. https://doi.org/10.1079/BJN19980106
  4. Saito, M., H. Sakagami, and S. Fujisawa. (2003) Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BRA) and butylated hydroxytoluene (BHT). Anticancer Res. 23: 4693-4701.
  5. Stefanidou, M., G. Alevisopoulos, A. Chatziioannou, and A. Kouteslinis (2003) Assessing food additive toxicity using a cell model. Vet. Hum. Toxicol. 45: 103-105.
  6. Sadler, M (2003) Nutritional properties of edible fungi. Nutr. Bull. 28: 305-308. https://doi.org/10.1046/j.1467-3010.2003.00354.x
  7. Yang, J. H., H. C. Lin, and J. L. Mau (2001) Non-volatile taste components of several commercial mushrooms. Food Chem. 72: 465-471. https://doi.org/10.1016/S0308-8146(00)00262-4
  8. Lee, B. C., J. T. Bae, H. B. Pyo, T. B. Choe, S. W. Kim, H. J. Hwang, and J. W. Yun (2003) Biological activities of the polysaccharides produced from submerged culture of the edible basidiomycete Grifola frondosa. Enzyme Microb. Technol. 32: 574-581. https://doi.org/10.1016/S0141-0229(03)00026-7
  9. Mall, J. L., H. C. Lin, and S. F. Song (2002) Antioxidant properties of several specialty mushrooms. Food Res. Int. 35: 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  10. Yang, J. H., H. C. Lin, and J. L. Mau (2002) Antioxidant properties of several commercial mushrooms. Food Chem. 77: 229-235. https://doi.org/10.1016/S0308-8146(01)00342-9
  11. Yen, G. C. and H. Y. Chen (1995) Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32. https://doi.org/10.1021/jf00049a007
  12. Lee, I. H., R. L. Huang, C. T. Chen, H. C. Chen, W. C. Hsu, and M. K. Lu (2002) Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol. Lett. 209: 63-67. https://doi.org/10.1111/j.1574-6968.2002.tb11110.x
  13. Liu, F., V. E. C. Ooi, and S. T. Chang (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60: 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  14. Tslapali, E., S. Whaley, J. Kalbfleisch, H. E. Ensley, I. W. Browder, and D. L. Williams (2001) Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic. Biol. Med. 30: 393-402. https://doi.org/10.1016/S0891-5849(00)00485-8
  15. Cheung, P. C. K. (1996) The hypercholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats. Nutr. Res. 16: 1721-1725. https://doi.org/10.1016/0271-5317(96)00191-1
  16. Gao, Q., R. Seljejid, H. Chen, and R. Jiang (1996) Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydr. Res. 288: 135-142. https://doi.org/10.1016/S0008-6215(96)90789-2
  17. Reshetnikov, S. R., S. P. Wasser, I. Duckman, and K. Tsukor (2000) Medicinal value of the geuns Tremella Pers (Heterobasidiomycetes). Int. J. Med. Mushrooms. 2: 169-193.
  18. Waterman, P. G. and S. Mole (1994) Analysis of Polyphenolic Plant Metabolites. p. 83. Blackwell Scientific Publ, Oxford.
  19. Woisky, R. G. and A. Salatino (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J. Apicult. Res. 37: 99-105. https://doi.org/10.1080/00218839.1998.11100961
  20. Li, Y. G., G. Tanner, and P. Larkin (1996) The DMACA-HCl protocol and the threshold proantho-cyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70: 89-101. https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<89::AID-JSFA470>3.0.CO;2-N
  21. Omran, H., H. Buchenhuskes, B. Zapo, and K. Gierscher (1989) Technical enzymes for the liquefaction of white cabbage and sauerkraut. Food Biotech. 3: 59-63. https://doi.org/10.1080/08905438909549698
  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye biding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  23. Cheung, L. M., P. C. K. Cheung, and V. E. C. Ooi (2003) Antioxidant activity and total polyphenolics of edible mushroom extracts. Food Chem. 81: 249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  24. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, and M. Yang (1999) Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Forni, L. G., V. O. Mora-Arellano, J. E. Packer, and R. L. Willson (1986) Nitrogen dioxide and related free radicals: electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. J. Chem. Soc. Perkin Trans. 2: 1-6.
  26. Decker, E. A. and B. Welch (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674-677. https://doi.org/10.1021/jf00093a019
  27. Tsai, S. Y., S. J. Huang, and J. L. Mau (2006) Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 98: 670-677. https://doi.org/10.1016/j.foodchem.2005.07.003
  28. Wada, T., Y. Hayashi, and H. Shibata (1996) Asiaticusin A and B, novel prenylated polyphenolics from Boletinus asiaticus and B. paluster (Boletaceae) fungi. Biosci. Biotech. Bioch. 60: 120-121. https://doi.org/10.1271/bbb.60.120
  29. Lo, K. M. and P. C. K. Chung (2005) Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem. 89: 533-539. https://doi.org/10.1016/j.foodchem.2004.03.006
  30. Huang, L. C. (2000) Antioxidant Properties and Polysaccharide Composition Analysis of Antrodia camphorate and Agaricus blazei. Master's Thesis. National Chung-Hsing University, Taichung, Taiwan.
  31. Mokbel, M. S. and F. Hashinaga (2006) Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem. 94: 529-534. https://doi.org/10.1016/j.foodchem.2004.11.042
  32. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura (1992) Antioxidative properties of xantan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agri. Food Chem. 40: 945-948. https://doi.org/10.1021/jf00018a005
  33. Ferreira, I. C., F. R. Baptista, P. Vilas-Boas and L. Barros (2007) Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100: 1511-1516. https://doi.org/10.1016/j.foodchem.2005.11.043
  34. Mau, J. L., S. Y. Tsai, Y. H. Tseng, and S. J. Huang (2005) Antioxidant properties of hot water extracts from Ganoderma tsugae Murrill. LWT-Food Sci. Technol. 38: 589-597. https://doi.org/10.1016/j.lwt.2004.08.010
  35. Huang, G. W. (2003) Taste Quality and Antioxidant and Antimutagenic Properties of Pleutotus citrinopileatus. Master's Thesis. National Chung-Hsing University, Taichung, Taiwan.
  36. Huang, D. J., B. X. Ou, and R. L. Prior (2005) The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53: 1841-1856. https://doi.org/10.1021/jf030723c
  37. Murcia, A. M., M. Martinez-Tome, A. M. Jimenez, A. M. Vera, M. Honrubia, and P. Parras (2002) Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. J. Food Prot. 65: 1614-1622. https://doi.org/10.4315/0362-028X-65.10.1614
  38. Mattila, P., P. S. Vaananen, K. Kongo, H. Aro, and T. Jalava (2002) Basic composition and amino acid contents of mushrooms cultivated in Finland. J. Agric. Food Chem. 50: 6419-6422. https://doi.org/10.1021/jf020608m
  39. Endo, A. (1998) Chemistry, biochemistry, and pharmacology of HMO CoA reductase inhibitors. Klin. Wochenschr. 66: 421-427.
  40. Jose, N. and K. K. Janardhanan (2000) Antioxidant and antitumour activity of Pleurotus florida. Curr. Sci. 79: 941-943.
  41. Lin, H. C. (1999) Evaluation of Taste Quality and Antioxidant Properties of Edible Mushrooms. Master's Thesis. National Chung-Hsing University, Taichung, Taiwan.