Purification and Characterization of Antibacterial Compound Produced by Bacillus subtilis MJP1

Bacillus subtilis MJP1이 생산하는 항세균 물질의 분리.정제 및 특성규명

  • Received : 2010.01.06
  • Accepted : 2010.02.25
  • Published : 2010.03.28

Abstract

Antibacterial compound from Bacillus subtilis MJP1 was purified using C18 Sep-Pak cartridge, ion exchange chromatography, and gel filtration chromatography. The purified antibacterial compound showed antibacterial activity against Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus subsp. aureus, and Enterococcus faecalis. The purified antibacterial compound was found to be stable at $100^{\circ}C$ for 5 min and in the pH range of 3.0~9.0, but it was unstable at pH 10.0. It was inactivated by proteinase K and pronase E, and heat treatment at $121^{\circ}C$ for 15 min, but it was stable with lipase and $\alpha$-amylase treatment, which indicated its proteineous nature. Ultra performance liquid chromatography and electrospray ionization tandem mass spectrometry analysis were used to identify the purified antibacterial compound and confirmed the existence of two peptides (3356.54 Da, 3400.5244 Da).

B. subtilis MJP1이 생산하는 항균물질을 분리 정제하기 위하여 SPE, IEC, GFC를 통한 정제를 수행하였다. 정제된 항세균 물질은 tricine SDS-PAGE에서 하나의 band임을 확인 한 후 N-말단 아미노산 서열분석을 하였으나 N-말단이 blocking 되어 그 서열을 분석할 수 없였다. 이에 그 내부서열을 알아보기 위한 LC를 이용한 ESI-MS/MS를 시행하였으나 내부서열도 확인할 수 없었고, UPLC를 이용한 ESI-MS/MS를 시행한 결과 항세균 활성 물질은 분자량이 매우 유사한 2개의 peptide(3356.54 Da, 3400.5244 Da)가 존재함을 확인하였다. 정제된 항세균 물질의 항균 spectrum을 조사한 결과, L. monocytogenes에 가장 강한 항균활성을 나타내며 이외에 B. subtilis, S. aureus subsp. aureus, E. faecalis 등의 Gram 양성균에서 항균활성을 나타내였다. 정제된 B. subtilis 항세균 물질은 pH 3.0부터 pH 9.0 범위에서는 안정하였으며 $4^{\circ}C$, $30^{\circ}C$, $50^{\circ}C$에서 24시간, $100^{\circ}C$에서 5분 동안 매우 안정하였고, $70^{\circ}C$에서 24 시간, $100^{\circ}C$에서 30분 동안 처리한 구간부터 역가가 감소하여 $121^{\circ}C$에서 15분 동안 처리한 구간에서는 역가가 완전히 소실되었다. 효소 안정성 실험에서 정제된 항세균 물질은 일부 단백분해효소에 의해 분해되어 역가를 상실하였으며, lipase나 $\alpha$-amylase에서는 안정함을 나타냈다. 이로부터 정제된 항세균 물질이 넓은 pH 범위에서 안정하고, 비교적 높은 온도에서도 활성을 유지한다는 점을 관찰할 수 있었으며, 단백분해효소에 의해 분해되므로 bacteriocin임을 확인하였다. 본 연구를 통하여 B. subtilis MJP1으로부터 분리 정제된 bacteriocin은 class IIa군의 특성과 유사하며, B. subtilis MJP1은 본 분리 bacteriocin 이외에도 다른 항세균 물질과 항진균 물질을 생산하는 균주임을 알 수 있었다.

Keywords

References

  1. Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem.(Tokyo). 98: 585-603.
  2. Bizani, D. and A. Brandelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8A. J. Appl. Microbiol. 93: 512-519. https://doi.org/10.1046/j.1365-2672.2002.01720.x
  3. Bradford, M. M. 1976. A rapid and sensitive method quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, S. Jaoua, and A. Boudabous. 2001. Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247. https://doi.org/10.1046/j.1472-765X.2001.00898.x
  5. Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A boudabos. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
  6. Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43: 164-167.
  7. Delves-Broughton, J. 1990. Nisin and its uses as a food preservative. Food Technol. 44: 100-117.
  8. Farries, T. C., A. Harris, A. D. Auffret, and A. Aitken. 1991. Removal of N-acetyl groups from blocked peptides with acylpeptide hydrolase: Stabilization of the enzyme and its application to protein sequencing. Eur. J. Biochem. 196: 679-685. https://doi.org/10.1111/j.1432-1033.1991.tb15865.x
  9. Hoover, D. G. and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp. 23-39. In D. G. Hoover and L. R. Steenson. (eds.), Bacteriocins of Lactic Acid Bacteria. Academic Press, Inc., San Diego, U.S.A.
  10. Jack R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171-200.
  11. Jansen, E. F. and D. J. Hirschmann. 1944. Subtilin-an antibacterial product of Bacillus subtilis: culturing conditions and properties. Arch. Biochem. 4: 297-309.
  12. Jiraphocakul, S., T. W. Sulivan, and K. M. Shahani. 1990. Influence of a dried Bacillus subtilis culture and antibiotics on performance and intestinal microflora in turkeys. Poult. Sci. 69: 1966-1973. https://doi.org/10.3382/ps.0691966
  13. Meyer, H. E., M. Heber, B. Eisermann, H. Korte, J. W. Metzger, and G. Jung. 1994. Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal. Biochem. 223: 185-190. https://doi.org/10.1006/abio.1994.1571
  14. Niall. H. D. 1973. Automated Edman degradation: The protein sequenator. Methods Enzymol. 27: 942-1010. https://doi.org/10.1016/S0076-6879(73)27039-8
  15. Oscariz, J. C., I. Lasa, and A. G. Pisabarro. 1999. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178: 337-341.
  16. Oscariz, J. C., L. Cinatas, H. Holo, I. Lasa, I. F. Nes, and A. G. Pisabarro. 2006. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254: 108-115. https://doi.org/10.1111/j.1574-6968.2005.00009.x
  17. Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298. https://doi.org/10.1038/sj.jim.2900462
  18. Paik, S. H., A. Chakicherla, and J. N. Hansen. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273: 23134-23142. https://doi.org/10.1074/jbc.273.36.23134
  19. Piard, J. C. and M. Desmazeaud. 1992. Inhibiting factors produced by lactic acid bacteria. 2. Bacteriocins and other antimicrobial factors. Dairy. Sci. Tech. 72: 113-142. https://doi.org/10.1051/lait:199229
  20. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  21. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  22. Smith, B. J. 1994. Chemical cleavage of proteins. Methods Mol. Biol. 32: 297-309.
  23. Tagg, J. R., A. S. Dajani, and L. W. Wannamarker. 1976. Bacteriocin of Gram-positive bacteria. Bacteriol. Rev. 40: 722-756.
  24. Tagg, J. R. and A. R. Mcgiven. 1971. Assay system for bacteriocins. Appl. Microbiol. 21: 943.
  25. Uyangaa, T. 2007. Studies on the culture medium for large production of spores of Bacillus subtilis and purification of antibacterial activity of Bacillus sp. strain. (PhD dissertation). An seoung: Hangkyoung University.
  26. Von Döhren, H. 1995. Peptides, pp. 129-171. In L. C. Vining and C. Stuttard. (eds.), Genetics and Biochemistry of Antibiotic Production. Butterworth-Heinemann, Newton, M.A.
  27. Yang, E. J. and H. C. Chang. 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechnol. 35: 339-346.
  28. Zheng, G., L. Z. Yan, J. C. Vederas, and P. Zuber. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355.