DOI QR코드

DOI QR Code

Cloning and Characterization of a Novel Mannanase from Paenibacillus sp. BME-14

  • Fu, Xiaoyu (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Huang, Xiaoluo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liu, Pengfu (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Lin, Ling (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Wu, Gaobing (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Li, Chanjuan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Feng, Chunfang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Hong, Yuzhi (College of Plant Science and Technology, Huazhong Agricultural University)
  • 투고 : 2009.06.15
  • 심사 : 2009.09.16
  • 발행 : 2010.03.31

초록

A mannanase gene (man26B) was obtained from a sea bacterium, Paenibacillus sp. BME-14, through the constructed genomic library and inverse PCR. The gene of man26B had an open reading frame of 1,428 bp that encoded a peptide of 475- amino acid residues with a calculated molecular mass of 53 kDa. Man26B possessed two domains, a carbohydrate binding module (CBM) belonging to family 6 and a family 26 catalytic domain (CD) of glycosyl hydrolases, which showed the highest homology to Cel44C of P. polymyxa (60% identity). The optimum pH and temperature for enzymatic activity of Man26B were 4.5 and $60^{\circ}C$, respectively. The activity of Man26B was not affected by $Mg^{2+}$ and $Co^{2+}$, but was inhibited by $Hg^{2+},\;Ca^{2+},\;Cu^{2+},\;Mn^{2+},\;K^+,\;Na^+$, and $\beta$-mercaptoethanol, and slightly enhanced by $Pb^{2+}$ and $Zn^{2+}$. EDTA did not affect the activity of Man26B, which indicates that it does not require divalent ions to function. Man26B showed a high specific activity for LBG and konjac glucomannan, with $K_m,\;V_{max}$, and $k_{cat}$ values of 3.80 mg/ml, 91.70 ${\mu}mol$/min/mg protein, and 77.08/s, respectively, being observed when LBG was the substrate. Furthermore, deletion of the CBM6 domain increased the enzyme stability while enabling it to retain 80% and 60% of its initial activity after treatment at $80^{\circ}C$ and $90^{\circ}C$ for 30 min, respectively. This finding will be useful in industrial applications of Man26B, because of the harsh circumstances associated with such processes.

키워드

참고문헌

  1. Araki, R., S. Karita, A. Tanaka, T. Kimura, and K. Sakka. 2006. Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium. Biosci. Biotechnol. Biochem. 70: 3039-3041. https://doi.org/10.1271/bbb.60348
  2. Bolam, D. N., N. Hughes, R. Virden, J. H. Lakey, G. P. Hazlewood, B. Henrissat, K. L. Braithwaite, and H. J. Gilbert. 1996. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35: 16195-16204. https://doi.org/10.1021/bi961866d
  3. Braithwaite, K. L., G. W. Black, G. P. Hazlewood, B. R. Ali, and H. J. Gilbert. 1995. A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem. J. 305: 1005-1010.
  4. Cho, K. M., S. Y. Hong, S. M. Lee, Y. H. Kim, G. G. Kahng, H. Kim, and H. D. Yun. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73: 618-630. https://doi.org/10.1007/s00253-006-0523-2
  5. Filichkin, S. A., J. M. Leonard, A. Monteros, P. P. Liu, and H. Nonogaki. 2004. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 134: 1080-1087. https://doi.org/10.1104/pp.103.035998
  6. Fu, X., P. Liu, L. Lin, Y. Hong, X. Huang, X. Meng, and Z. Liu. 2009. A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8648-2.
  7. Gibbs, M. D., A. U. Elinder, R. A. Reeves, and P. L. Bergquist. 1996. Sequencing, cloning and expression of a beta-1,4-mannanase gene, manA, from the extremely thermophilic anaerobic bacterium, Caldicellulosiruptor Rt8B.4. FEMS Microbiol. Lett. 141: 37-43.
  8. Gibbs, M. D., R. A. Reeves, A. Sunna, and P. L. Bergquist. 1999. Sequencing and expression of a beta-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr. Microbiol. 39: 351-357. https://doi.org/10.1007/s002849900471
  9. Halstead, J. R., P. E. Vercoe, H. J. Gilbert, K. Davidson, and G. P. Hazlewood. 1999. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145: 3101-3108.
  10. Handford, M. G., T. C. Baldwin, F. Goubet, T. A. Prime, J. Miles, X. Yu, and P. Dupree. 2003. Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218: 27-36. https://doi.org/10.1007/s00425-003-1073-9
  11. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
  12. Kansoh, A. and Z. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek 85: 103-114.
  13. Kurokawa, J., E. Hemjinda, T. Arai, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Sequence of the Clostridium thermocellum mannanase gene man26B and characterization of the translated product. Biosci. Biotechnol. Biochem. 65: 548-554. https://doi.org/10.1271/bbb.65.548
  14. Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  15. Lusterio, D., F. Suizo, N. Labunos, M. Valledor, S. Ueda, S. Kawai, et al. 1992. Alkali-resistant, alkaline endo-1,4-$\beta$-glucanase produced by Bacillus sp. PKM-5430. Biosci. Biotechnol. Biochem. 56: 1671-1672. https://doi.org/10.1271/bbb.56.1671
  16. Marga, F., C. Ghakis, C. Dupont, R. Morosoli, and D. Kluepfel. 1996. Improved production of mannanase by Streptomyces lividans. Appl. Environ. Microbiol. 62: 4656-4658.
  17. Miller, G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  18. Politz, O., M. Krah, K. K. Thomsen, and R. Borriss. 2000. A highly thermostable endo-1,4-beta-mannanase from the marine bacterium Rhodothermus marinus. Appl. Microbiol. Biotechnol. 53: 715-721. https://doi.org/10.1007/s002530000351
  19. Stoll, D., A. Boraston, H. Stalbrand, B. W. McLean, D. G. Kilburn, and R. A. Warren. 2000. Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol. Lett. 183: 265-269. https://doi.org/10.1111/j.1574-6968.2000.tb08969.x
  20. Wang, Y., H. Yuan, J. Wang, and Z. Yu. 2009. Truncation of the cellulose binding domain improved thermal stability of endo-$\beta$-1,4-glucanase from Bacillus subtilis JA18. Bioresource Technol. 100: 345-349. https://doi.org/10.1016/j.biortech.2008.06.001
  21. Xu, B., D. Sellos, and J. C. Janson. 2002. Cloning and expression in Pichia pastoris of a blue mussel (Mytilus edulis) beta-mannanase gene. Eur. J. Biochem. 269: 1753-1760. https://doi.org/10.1046/j.1432-1327.2002.02824.x

피인용 문헌

  1. 재조합 대장균으로부터 생산된 Bacillus licheniformis WL-12의 Mannanase 특성 vol.53, pp.2, 2010, https://doi.org/10.3839/jabc.2010.013
  2. Isolation and Characterization of Cellulose-decomposing Bacteria Inhabiting Sawdust and Coffee Residue Composts vol.27, pp.3, 2010, https://doi.org/10.1264/jsme2.me11299
  3. Characterization of Mannanase from a Novel Mannanase-Producing Bacterium vol.60, pp.25, 2010, https://doi.org/10.1021/jf301944e
  4. Thermostable Recombinant β-(1→4)-Mannanase from C. thermocellum: Biochemical Characterization and Manno-Oligosaccharides Production vol.61, pp.50, 2010, https://doi.org/10.1021/jf403111g
  5. Special feature vol.4, pp.2, 2014, https://doi.org/10.5458/bag.4.2_113
  6. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana vol.239, pp.3, 2010, https://doi.org/10.1007/s00425-013-2005-y
  7. A β‐mannanase from Paenibacillus sp.: Optimization of production and its possible prebiotic potential vol.63, pp.5, 2010, https://doi.org/10.1002/bab.1419
  8. Characterization of endoglucanase from Paenibacillus sp. M33, a novel isolate from a freshwater swamp forest vol.57, pp.2, 2010, https://doi.org/10.1002/jobm.201600225
  9. Paenibacillus woosongensis으로부터 Mannanase 26AT 유전자의 클로닝과 유전자 산물의 분석 vol.27, pp.9, 2010, https://doi.org/10.5352/jls.2017.27.9.1003