DOI QR코드

DOI QR Code

Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus thermophilus HJ6

  • Kim, Hyun-Jung (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Ae-Ran (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Biomaterial Control, Dong-Eui University)
  • Received : 2009.06.24
  • Accepted : 2009.09.14
  • Published : 2010.03.31

Abstract

A thermostable trehalose synthase (TtTSase) from Thermus thermophilus HJ6 was immobilized on chitosan activated with glutaraldehyde. The yield of immobilization was evaluated as 39.68%. The optimum pH of the immobilized enzyme was similar to that of the free enzyme. However, the optimal temperature ranges were shifted by about $4^{\circ}C$ owing to better thermal stability after immobilization. The half-life of heat inactivation for free and immobilized enzymes was 5.7 and 6.3 days at $70^{\circ}C$, respectively, thus showing a lager thermostability of the immobilized enzyme. When tested in batch reaction, the immobilized enzyme retained its relative activity of 53% after 30 reuses of reaction within 12 days, and still retained 82% of its initial activity even after 150 days at $4^{\circ}C$. A packed-bed bioreactor with immobilized enzyme showed a maximum yield of 56% trehalose from 100 mM maltose in a continuous recycling system (bed volume: 10 ml) under conditions of pH 7.0 and $70^{\circ}C$.

Keywords

References

  1. Arguelles, J. C. 2000. Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Arch. Microbiol. 174: 217-224. https://doi.org/10.1007/s002030000192
  2. Chen, X. G., C. S. Liu, C. G. Liu, X. H. Meng, C. M. Lee, and H. J. Park. 2006. Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem. Eng. J. 27: 269-274. https://doi.org/10.1016/j.bej.2005.08.021
  3. Chiu, S. H., T. W. Chung, R. Giridhar, and W. T. Wu. 2004. Immobilization of $\beta$-cyclodextrin in chitosan beads for separation of cholesterol from egg yolk. Food Res. Int. 37: 217-223. https://doi.org/10.1016/j.foodres.2003.12.001
  4. Cho, Y. J., O. J. Park, and H. J. Shin. 2006. Immobilization of thermostable trehalose synthase for the production of trehalose. Enzyme Microb. Technol. 39: 108-113. https://doi.org/10.1016/j.enzmictec.2005.10.004
  5. D'Auria, S., F. Pellino, F. La Cara, R. Barone, M. Rossi, and R. Nucci. 1996. Immobilization on chitosan of a thermophilic $\beta$-glycosidase expressed in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 61: 157-166. https://doi.org/10.1007/BF02785698
  6. Di Lernia, I., C. Schiraldi, M. Generoso, and M. De Rosa. 2002. Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles 6: 341-347. https://doi.org/10.1007/s00792-001-0263-2
  7. Elbein, A. 1974. The metabolism of $\alpha$,$\alpha$-trehalose. Adv. Carbohydr. Chem. Biochem. 30: 227-256. https://doi.org/10.1016/S0065-2318(08)60266-8
  8. Gu, N. Y., J. L. Kim, H. J. Kim, D. J. You, H. W. Kim, and S. J. Jeon. 2009. Gene cloning and enzymatic properties of hyperthermostable $\beta$-glycosidase from Thermus thermophilus HJ6. J. Biosci. Bioeng. 107: 21-26. https://doi.org/10.1016/j.jbiosc.2008.10.002
  9. Kim, H. J., H. W. Kim, and S. J. Jeon. 2008. Gene cloning and expression of trehalose synthase from Thermus thermophilus HJ6. Kor. J. Microbiol. Biotechnol. 36: 182-188.
  10. Krajewska, B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilization: A review. Enzyme Microb. Technol. 35: 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013
  11. Monsan, P. and D. Combes. 1988. Enzyme stabilization by immobilization. Methods Enzymol. 137: 584-598. https://doi.org/10.1016/0076-6879(88)37055-2
  12. Monsan, P., I. Alemzadeh, and D. Combes. 1984. Invertase covalent grafting onto corn stover. Biotechnol. Bioeng. 26: 658-664. https://doi.org/10.1002/bit.260260704
  13. Nishimoto, T., M. Nakano, T. Nakano, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and properties of a novel enzyme, trehalose synthase from Pimelobacter sp. R48. Biosci. Biotech. Biochem. 60: 640-644. https://doi.org/10.1271/bbb.60.640
  14. Nishimoto, T. M. Nakano, S. Ikegami, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1995. Existence of a novel enzyme converting maltose into trehalose. Biosci. Biotech. Biochem. 59: 2189-2190. https://doi.org/10.1271/bbb.59.2189
  15. Paiva, C. and A. Panek. 1996. Biotechnological applications of the disaccharide trehalose. Biotechnol. Annu. Rev. 2: 293-314. https://doi.org/10.1016/S1387-2656(08)70015-2
  16. Petzelbauer, I., B. Kuhn, B. Splechtna, K. D. Kulbe, and B. Nidetzky. 2002. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable $\beta$-glycosidases and optimization of a packedbed reactor for lactose conversion. Biotechnol. Bioeng. 77: 619-631. https://doi.org/10.1002/bit.10110
  17. Petzelbauer, I., B. Nidetzky, D. Haltrich, and K. D. Kulbe. 1999. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable $\beta$-glycosidases. Biotechnol. Bioeng. 64: 322-332. https://doi.org/10.1002/(SICI)1097-0290(19990805)64:3<322::AID-BIT8>3.0.CO;2-9
  18. Portmann, M. and G. Birch. 1995. Sweet taste and solution properties of $\alpha$,$\alpha$-trehalose. J. Sci. Food Agric. 69: 275-281. https://doi.org/10.1002/jsfa.2740690303
  19. Ravi Kumar, M. N. V. 2000. Review of chitin and chitosan applications. React. Funct. Polym. 46: 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
  20. Roser, B. 1991. Trehalose, a new approach to premium dried foods. Trends Food Sci. Technol. 7: 166-169.
  21. Schiraldi, C., I. D. Lernia, and M. D. Rosa. 2002. Trehalose production: Exploiting novel approaches. Trends Biotechnol. 20: 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  22. Spagna, G., R. N. Barbagallo, E. Greco, I. Manenti, and T. G. Pifferi. 2002. A mixture of purified glycosidases from Aspergillus niger for oenological application immobilized by inclusion in chitosan gels. Enzyme Microb. Technol. 30: 80-89. https://doi.org/10.1016/S0141-0229(01)00455-0
  23. Wang, J. H., M. Y. Tsai, J. J. Chen, G. C. Lee, and J. F. Shaw. 2007. Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J. Agric. Food Chem. 55: 3435-3443. https://doi.org/10.1021/jf070181p

Cited by

  1. Enhancing the stability of xylanase from Cellulomonas fimi by cell‐surface display on Escherichia coli vol.112, pp.3, 2010, https://doi.org/10.1111/j.1365-2672.2012.05232.x
  2. Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions vol.17, pp.6, 2010, https://doi.org/10.1007/s00792-013-0581-1
  3. Immobilization and Characterization of Tannase from a Metagenomic Library and Its Use for Removal of Tannins from Green Tea Infusion vol.24, pp.1, 2010, https://doi.org/10.4014/jmb.1308.08047