DOI QR코드

DOI QR Code

Relation of Aphicidal Activity with Cuticular Degradation by Beauveria bassiana SFB-205 Supernatant Incorporated with Polyoxyethylene-(3)-Isotridecyl Ether

  • Kim, Jae-Su (Entomology Research Laboratory, Plant and Soil Science, University of Vermont) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2009.09.14
  • 심사 : 2009.11.03
  • 발행 : 2010.03.31

초록

The application of Beauveria bassiana SFB-205 supernatant incorporated with polyoxyethylene-(3)-isotridecyl ether (TDE-3) significantly reduced the population of two species of aphids including cotton aphid, Aphis gossypii, and green peach aphid, Myzus persicae, much higher in cotton aphid, compared with supernatant incorporated with Tween 80, which allows the relationship of aphicidal activity with the degradation of aphid cuticles to be determined. Overall, the degradation of the cuticles induced by the supernatant was more remarkable in conjunction with TDE-3 than Tween 80, and this phenomenon was more observable in cotton aphid through SDS-polyacrylamide gel electrophoresis, revealing high correlation with their aphicidal activities.

키워드

참고문헌

  1. Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
  2. Alavo, T. B. C. and M. Accodji. 2004. The entomopathogenic fungus Verticillium lecanii (Deuteromycetes, Moniliaceae), the proteins hydrophobins and the biological control of aphids (Homoptera, Aphididae): Literature review. Arch. Phytopathol. Plant Protec. 37: 201-204. https://doi.org/10.1080/03235400842000202210
  3. Andersen, S. O., P. Hojrup, and P. Roepstorff. 1995. Insect cuticular proteins. Insect Biochem. Mol. Biol. 25: 153-176. https://doi.org/10.1016/0965-1748(94)00052-J
  4. Bateman, R. P. and R. T. Alves. 2000. Delivery systems for mycoinsecticides using oil-based formulations. Asp. Appl. Biol. 57: 163-170.
  5. Bernhard, K., P. J. Holloway, and H. D. Burges. 1998. A catalogue of formulation additives: Function, nomenclature, properties and suppliers, pp. 333-365. In H. D. Burges (ed.). Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatment. Kluwer Academic Publishing, Dordrecht.
  6. Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 1989. An Introduction to the Study of Insects, pp. 336-338. 6th Ed. Saunders College Publishing, Philadelphia.
  7. Boucias, D. G. and J. C. Pendland. 1991. Attachment of mycopathogens to cuticle: The initial event of mycoses in arthropod hosts, pp. 101-127. In G. T. Cole and H. C. Hock (eds.). The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Press, New York.
  8. Burges, H. D. 1998. Formulation of mycopesticides, pp. 131-186. In H. D. Burges (ed.). Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatment. Kluwer Academic, Dordrecht.
  9. Butt, T. M. and M. S. Goettel. 2000. Bioassay of entomogenous fungi, pp. 141-196. In A. Navon and K. R. S. Ascher (eds.). Bioassays of Entomopathogenic Microbes and Nematodes. CABI Publishing, Wallingford.
  10. Campos, R. A., W. Arruda, J. T. Boldo, M. V. Silvia, N. M. Barros, J. L. Azedevo, A. Schrank, and M. H. Vainstein. 2005. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisinlike proteases and chitinases. Curr. Microbiol. 50: 257-261. https://doi.org/10.1007/s00284-004-4460-y
  11. Casanova, H., C. Ortiz, A. Vallejo, and P. Araque. 2004. Nicotine oleate dispersions as botanical insecticides. Progr. Colloid Polymer Sci. 128: 187-192.
  12. Charnley, A. K. 2003. Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Adv. Bot. Res. 40: 241-321. https://doi.org/10.1016/S0065-2296(05)40006-3
  13. Clarkson, J. M. and A. K. Charnley. 1996. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4: 197-203. https://doi.org/10.1016/0966-842X(96)10022-6
  14. Cliquet, S. and M. A. Jackson. 2005. Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. J. Ind. Microbiol. Biotechnol. 32: 204-210. https://doi.org/10.1007/s10295-005-0232-3
  15. Dombrovsky, A., H. Huet, H. Zhang, N. Chejanovsky, and B. Raccah. 2003. Comparison of newly isolated cuticular protein genes from six aphid species. Insect Biochem. Mol. Biol. 33: 709-715. https://doi.org/10.1016/S0965-1748(03)00065-1
  16. Dombrovsky, A., I. Sobolev, N. Chejanovsky, and B. Raccah. 2007. Characterization of RR-1 and RR-2 cuticular proteins from Myzus persicae. Insect Biochem. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146: 256-264. https://doi.org/10.1016/j.cbpb.2006.11.013
  17. Donatti, A. C., L. Furlaneto-Maia, M. H. Fungaro, and M. C. Furlaneto. 2008. Production and regulation of cuticle-degrading proteases from Beauveria bassiana in the presence of Rhammatocerus schistocercoides cuticle. Curr. Microbiol. 56: 256-260. https://doi.org/10.1007/s00284-007-9071-y
  18. Fan, Y., W. Fang, S. Guo, X. Pei, Y. Zhang, Y. Xiao, et al. 2007. Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl. Environ. Microbiol. 73: 295-302. https://doi.org/10.1128/AEM.01974-06
  19. Jackson, M. A., A. R. Payne, and D. A. Odelson. 2004. Liquidculture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus using portable fermentation equipment. J. Ind. Microbiol. Biotechnol. 31: 149-154.
  20. Jin, X., K. E. Grigas, C. A. Johnson, P. Perry, and D. W. Miller. 1999. Method for storing fungal conidia. US Patent 5989898.
  21. Kaur, G. and V. Padmaja. 2008. Relationships among activities of extracellular enzyme production and virulence against Helicoverpa armigera in Beauveria bassiana. J. Basic Microbiol. 48: 1-10. https://doi.org/10.1002/jobm.200890001
  22. Kim, J. S., J. Y. Roh, J. Y. Choi, S. C. Shin, M. J. Jeon, and Y. H. Je. 2008. Identification of an entomopathogenic fungus, Beauveria bassiana SFB-205 toxic to the green peach aphid, Myzus persicae. Int. J. Ind. Entomol. 17: 211-215.
  23. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  24. Luz, C. and I. Batagin. 2005. Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathologia 160: 51-62. https://doi.org/10.1007/s11046-005-0210-3
  25. St. Leger, R. J., L. Joshi, M. J. Bidochka, and D. W. Roberts. 1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc. Natl. Acad. Sci. U.S.A. 93: 6349-6354. https://doi.org/10.1073/pnas.93.13.6349
  26. Ypsilos, I. K. and N. Magan. 2004. Impact of water-stress and washing treatments on production, synthesis and retention of endogenous sugar alcohols and germinability of Metarhizium anisopliae blastospores. Mycol. Res. 108: 1337-1345. https://doi.org/10.1017/S0953756204001030

피인용 문헌

  1. Complementary effect of Phloxine B on the insecticidal efficacy of Isaria fumosorosea SFP‐198 wettable powder against greenhouse whitefly, Trialeurodes vaporariorum West. vol.66, pp.12, 2010, https://doi.org/10.1002/ps.2020
  2. A novel biopesticide production: attagel-mediated precipitation of chitinase from Beauveria bassiana SFB-205 supernatant for thermotolerance vol.87, pp.5, 2010, https://doi.org/10.1007/s00253-010-2543-1
  3. Roles of adjuvants in aphicidal activity of enzymes from Beauveria bassiana (Ascomycota: Hypocreales) SFB-20S supernatant vol.13, pp.4, 2010, https://doi.org/10.1016/j.aspen.2010.06.002
  4. Mass Production of Aphicidal Beauveria bassiana SFB-205 Supernatant with the Parameter of Chitinase vol.21, pp.6, 2010, https://doi.org/10.4014/jmb.1101.01001