DOI QR코드

DOI QR Code

Investigation of Bacterial Diversity in Membrane Bioreactor and Conventional Activated Sludge Processes from Petroleum Refineries Using Phylogenetic and Statistical Approaches

  • Silva, Cynthia (Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP) ;
  • Jesus, Ederson C. (Center for Microbial Ecology, Michigan State University) ;
  • Torres, Ana P. R. (PETROBRAS R&D Center, Cidade Universitaria) ;
  • Sousa, Maira P. (PETROBRAS R&D Center, Cidade Universitaria) ;
  • Santiago, Vania M. J. (PETROBRAS R&D Center, Cidade Universitaria) ;
  • Oliveira, Valeria M. (Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP)
  • Received : 2009.06.24
  • Accepted : 2009.12.03
  • Published : 2010.03.31

Abstract

Bacterial diversity of two distinct wastewater treatment systems, conventional activated sludge (CAS) and membrane bioreactor (MBR), of petroleum refineries were investigated through 16S rRNA gene libraries. Sequencing and phylogenetic analysis showed that the bacterial community composition of sludge samples was distinct between the two wastewater treatment systems. MBR clones belonged predominantly to Class Betaproteobacteria, represented mainly by genera Thiobacillus and Thauera, whereas CAS clones were mostly related to Class Alphaproteobacteria, represented by uncultured bacteria related to Order Parvularculales. Richness estimators ACE and Chao revealed that the diversity observed in both libraries at the species level is an underestimate of the total bacterial diversity present in the environment and further sampling would yield an increased observed diversity. Shannon and Simpson diversity indices were different between the libraries and revealed greater bacterial diversity for the MBR library, considering an evolutionary distance of 0.03. LIBSHUFF analyses revealed that MBR and CAS communities were significantly different at the 95% confidence level ($P{\leq}0.05$) for distances $0{\leq}D{\leq}0.20$. This work described, qualitatively and quantitatively, the structure of bacterial communities in industrial-scale MBR and CAS processes of the wastewater treatment system from petroleum refineries and demonstrated clearly differentiated communities responsible for the stable performance of wastewater treatment plants.

Keywords

References

  1. Amann, R. I., W. Ludwig, and K. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
  2. Barbosa, V. L., S. D. Atkins, V. P. Barbosa, J. E. Burgess, and R. M. Stuetz. 2006. Characterization of Thiobacillus thioparus isolated from a activated sludge bioreactor used for hydrogen sulde treatment. J. Appl. Microbiol. 101: 1269-1281. https://doi.org/10.1111/j.1365-2672.2006.03032.x
  3. Beer, M., E. M. Seviour, Y. Kong, M. Cunningham, L. L. Blackall, and R. J. Seviour. 2002. Phylogeny of the filamentous bacterium Eikelboom Type 1851, and design and application of a 16S rRNA targeted oligonucleotide probe for its fluorescence in situ identification in activated sludge. FEMS Microbiol. Lett. 207: 179-183. https://doi.org/10.1111/j.1574-6968.2002.tb11048.x
  4. Bjornsson, L., P. Hugenholtz, G. W. Tyson, and L. L. Blackall. 2002. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148: 2309-2318.
  5. Bodour, A. A., J.-M. Wang, M. L. Brusseau, and R. M. Maier. 2003. Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ. Microbiol. 5: 888-895. https://doi.org/10.1046/j.1462-2920.2003.00481.x
  6. Braile, P. M. 1979. Manual of Industrial Wastewater Treatment, 1st Ed. Sao Paulo, CETESB.
  7. Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11: 783-791.
  8. Chao, A., M.-C. Ma, and M. C. K. Yang. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80: 193-201. https://doi.org/10.1093/biomet/80.1.193
  9. Cho, J. C. and S. J. Giovannoni. 2003. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the $\alpha$-Proteobacteria. Intl. J. Syst. Evol. Microbiol. 53: 1031-1036. https://doi.org/10.1099/ijs.0.02566-0
  10. Cho, K.-S., M. Hirai, and M. Shoda. 1991. Degradation characteristics of hydrogen sulfide, ethanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW 44 isolated from peat biofilter. J. Ferment. Bioeng. 71: 384-389. https://doi.org/10.1016/0922-338X(91)90248-F
  11. Choi, J.-H., S. H. Lee, K. Fukushi, and K. Yamamoto. 2007. Comparison of sludge characteristics and PCR-DGGE based microbial diversity of nanofiltration and microfiltration membrane bioreactor. Chemosphere 67: 1543-1550. https://doi.org/10.1016/j.chemosphere.2006.12.004
  12. Clescerl, L. G., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater. APHA, AWWA, WEF, Washington, U.S.A.
  13. Colwell, R. K. and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Lond. B 345: 101-118. https://doi.org/10.1098/rstb.1994.0091
  14. Duncan, K. E., K. L. Sublette, P. A. Rider, A. Stepp, R. R. Beitle, J. A. Conner, and R. Kolhatkar. 2001. Analysis of a microbial community oxidizing inorganic sulfide and mercaptans. Biotechnol. Prog. 17: 768-774. https://doi.org/10.1021/bp0100530
  15. Ewing, B., L. Hillier, M. Wendl, and P. Green. 1998. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185.
  16. Felsenstein, J. 1989. PHYLIP - phylogeny inference package (version 3.2). Cladistics 5: 164-166.
  17. Ferreira, D. F. 2000. Analises estatisticas por meio do Sisvar para Windows versao 4.0. In: 45a Reuniao Anual da Regiao Brasileira da Sociedade Internacional de Biometria, pp. 255-258. UFSCar, Sao Carlos, SP.
  18. Good, I. J. 1953. The population frequency of species and the estimation of population parameters. Biometrika 40: 237-264.
  19. Gordon, D., C. Abajian, and P. Green. 1998. Consed: A graphical tool for sequence finishing. Genome Res. 8: 195-202.
  20. Gremion, F., A. Chatzinotas, and H. Harms. 2003. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 5: 896-907. https://doi.org/10.1046/j.1462-2920.2003.00484.x
  21. Grobkopf, R., S. Stubner, and W. Liesack. 1998. Novel Euryarchaeota lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64: 960-969.
  22. Henze, M., P. Harremoes, J. la Cour Jansen, and E. Arvin. 1997. Wastewater treatment. In U. Forstner, R. J. Murphy, and W. H. Rulkens (eds.). Environmental Engineering. 2nd Ed. Springer, Berlin.
  23. Horn, M. A., H. L. Drake, and A. Schramm. 2006. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl. Environ. Microbiol. 72: 1019-1026. https://doi.org/10.1128/AEM.72.2.1019-1026.2006
  24. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774.
  25. Hughes, J. B., J. J. Hellmann, T. H. Ricketts, and B. J. M. Bohannan. 2001. Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67: 4399-4406. https://doi.org/10.1128/AEM.67.10.4399-4406.2001
  26. Judd, S. The status of membrane bioreactor technology. 2008. Trends Biotechnol. 26: 109-116. https://doi.org/10.1016/j.tibtech.2007.11.005
  27. Juretschko, S., L. Loy, A. Lehner, and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. System. Appl. Microbiol. 25: 84-99. https://doi.org/10.1078/0723-2020-00093
  28. Kimura, M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Mol. Biol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  29. Kraigher, B., T. Tina Kosjek, E. Heath, B. Kompare, and I. Mandic-Mulec. 2008. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 42: 4578-4588. https://doi.org/10.1016/j.watres.2008.08.006
  30. Lane, D. L., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. U.S.A. 82: 6955-6959. https://doi.org/10.1073/pnas.82.20.6955
  31. Lane, D. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York, N.Y.
  32. Lin, S., S. Jin, L. Fu, C. Quan, and Y. S. Yang. 2009. Microbial community variation and functions to excess sludge reduction in a novel gravel contact oxidation reactor. J. Hazard. Mater. 165: 1083-1090. https://doi.org/10.1016/j.jhazmat.2008.10.106
  33. Loy, A., H. Daims, and M. Wagner. 2002. Activated sludge: Molecular techniques for determining community composition, pp. 26-43. In G. Bitton (ed.). The Encyclopedia of Environmental Microbiology. Wiley, New York.
  34. Magurran, A. E. 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford.
  35. Manefield, M., A. S. Whiteley, R. I. Griffiths, and M. J. Bailey. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68: 5367-5373. https://doi.org/10.1128/AEM.68.11.5367-5373.2002
  36. Mao, Y., X. Zhang, X. Yan, B. Liu, and L. Zhao. 2008. Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. J. Microbiol. Meth. 75: 231-236. https://doi.org/10.1016/j.mimet.2008.06.005
  37. Mariano, J. B. 2001. Environmental impacts of petroleum refining. MSc. Dissertation, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
  38. Miura, Y., Y. Watanabe, and S. Okabe. 2007. Significance of Chloroflexi in performance of submerged membrane bioreactor (MBR) treating municipal wastewater. Environ. Sci. Technol. 41: 7787-7794. https://doi.org/10.1021/es071263x
  39. Mohamed, N. M., J. J. Enticknap, J. E. Lohr, S. M. McIntosh, and R. T. Hill. 2008. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ Microbiol. 74: 1209-1222. https://doi.org/10.1128/AEM.02047-07
  40. Monteiro, J. P., A. Magrini, A. S. Szklo, and R. T. S. Nunes. 2004. Management of water in the petroleum refinery and perspective of reuse. In: Ist Academic Congress of Environment and Development of Rio de Janeiro, RJ, Brazil. CADMA. FGV, Rio de Janeiro.
  41. Mota, S. 1997. Introduction to Environmental Engineering. 1st Ed. Rio de Janeiro, Brazil, ABES.
  42. Neria-Gonzales, I., E. T. Wang, F. Ramirez, J. M. Romero, and C. Hernandez-Rodriguez. 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from southeast of Mexico. Anaerobe 12: 122-133. https://doi.org/10.1016/j.anaerobe.2006.02.001
  43. Pereira, R. C. 2005. Development and application of a new methodology for the speciation analysis of selenium in aqueous effluents from petroleum refineries. MSc. Dissertation, PUCRio de Janeiro, RJ, Brazil.
  44. Pettitt, A. N. 1982. Cramer-von Mises statistic, pp. 220-221. In S. Kotz and N. L. Johnson (eds.). Encyclopedia of Statistical Sciences. Wiley-Interscience, New York, N.Y.
  45. Schloss, P. D. and J. Handelsman. 2004. Status of the Microbial Census. Microbiol. Mol. Biol. Rev. 68: 686-691. https://doi.org/10.1128/MMBR.68.4.686-691.2004
  46. Schloss, P. D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501-1506. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  47. Schloss, P. D. and J. Handelsman. 2006. Toward a census of bacteria in soil. PLoS Comp. Biol. 2: e92. https://doi.org/10.1371/journal.pcbi.0020092
  48. Shinoda, Y., J. Akagi, Y. Uchihashi, A. Hirais, H. Yukawa, H. Yurimoto, Y. Sakai, and N. Kato. 2005. Anaerobic degradation of aromatic compounds by Magnetospirillum strains: Isolation and degradation genes. Biosci. Biotechnol. Biochem. 69: 1483-1491. https://doi.org/10.1271/bbb.69.1483
  49. Shokrollahzadeh, S., F. Azizmohseni, F. Golmohammad, H. Shokouhi, and F. Khademhaghighat. 2008. Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresource Technol. 99: 6127-6133. https://doi.org/10.1016/j.biortech.2007.12.034
  50. Silva, C. C., A. F. Viero, A. C. F. Dias, F. D. Andreote, E. J. Jesus, S. O. De Paula, A. P. R. Torres, V. M. J. Santiago, and V. M. Oliveira. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load. J. Microbiol. Biotechnol. Doi: 10.4014/jmb.0906.06001. [In press.]
  51. Singleton, D. R., M. A. Furlong, S. L. Rathbun, and W. B. Whitman. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol. 67: 4374-4376. https://doi.org/10.1128/AEM.67.9.4374-4376.2001
  52. Sipma, J., A. Svitelskaya, B. van der Marka, L. W. H. Pol, G. Lettinga, C. J. N. Buismana, and A. J. H. Janssena. 2004. Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols. Water Res. 38: 4331-4340. https://doi.org/10.1016/j.watres.2004.08.022
  53. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  54. Tanji, Y., T. Kanagawa, and E. Mikami. 1989. Removal of dimethyl sulfide, methyl mercaptan, and hydrogen sulfide by immobilized Thiobacillus thioparus TK-m. J. Ferment. Bioeng. 68: 280-285.
  55. Tarlera, S. and E. B. Denner. 2003. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the $\beta$-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53: 1085-1091. https://doi.org/10.1099/ijs.0.02039-0
  56. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  57. Viero, A. F., T. M. Melo, A. P. R. Torres, N. R. Ferreira, G. L. Sant'Anna Jr., C. P. Borges, and V. M. J. Santiago. 2008. The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. J. Membrane Sci. 319: 223-230. https://doi.org/10.1016/j.memsci.2008.03.038
  58. Wang, Z. and Z. Wu. 2009. Distribution and transformation of molecular weight of organic matters in membrane bioreactor and conventional activated sludge process. Chem. Eng. J. 150: 396-402. https://doi.org/10.1016/j.cej.2009.01.018
  59. Wever, H., S. Weiss, T. Reemtsm, V. Vereecken, J. Muller, T. Knepper, et al. 2007. Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment. Water Res. 41: 935-945. https://doi.org/10.1016/j.watres.2006.11.013
  60. Zhou, J., B. Xia, D. S. Treves, L.-Y. Wu, T. L. Marsh, R. V. O'Neill, A. V. Palumbo, and J. M. Tiedje. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 61: 326-334.

Cited by

  1. Polyhydroxybutyrate production from lactate using a mixed microbial culture vol.108, pp.9, 2010, https://doi.org/10.1002/bit.23148
  2. Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil vol.1, pp.None, 2011, https://doi.org/10.1186/2191-0855-1-35
  3. Removal of petroleum pollutants and monitoring of bacterial community structure in a membrane bioreactor vol.83, pp.1, 2010, https://doi.org/10.1016/j.chemosphere.2010.12.092
  4. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system vol.2, pp.1, 2010, https://doi.org/10.1186/2191-0855-2-18
  5. Comparison of Ammonia-Oxidizing Bacterial Community Structure in Membrane-Assisted Bioreactors Using PCR-DGGE and FISH vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1201.01014
  6. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater vol.8, pp.4, 2010, https://doi.org/10.1371/journal.pone.0061811
  7. Characterization and Comparison of Bacterial Communities Selected in Conventional Activated Sludge and Membrane Bioreactor Pilot Plants: A Focus on Nitrospira and Planctomycetes Bacterial Phyla vol.67, pp.1, 2013, https://doi.org/10.1007/s00284-013-0333-6
  8. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia vol.30, pp.2, 2010, https://doi.org/10.1007/s11274-013-1506-y
  9. Bioremediation of petroleum hydrocarbons‐contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant vol.89, pp.7, 2014, https://doi.org/10.1002/jctb.4188
  10. A study of the relationship among sludge retention time, bacterial communities, and hydrolytic enzyme activities in inclined plate membrane bioreactors for the treatment of municipal wastewater vol.98, pp.21, 2010, https://doi.org/10.1007/s00253-014-5914-1
  11. Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field vol.16, pp.4, 2010, https://doi.org/10.3390/ijms16047445
  12. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater vol.13, pp.4, 2010, https://doi.org/10.2166/wh.2015.079
  13. Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations vol.101, pp.2, 2010, https://doi.org/10.1007/s00253-016-7902-0
  14. Short-term Influence of Drilling Fluid on Ciliates from Activated Sludge in Sequencing Batch Reactors vol.46, pp.1, 2010, https://doi.org/10.2134/jeq2016.09.0332
  15. Removal of Viruses in Membrane Bioreactors vol.146, pp.7, 2010, https://doi.org/10.1061/(asce)ee.1943-7870.0001743
  16. Enhanced Nitrogen Removal of Steel Rolling Wastewater by Constructed Wetland Combined with Sulfur Autotrophic Denitrification vol.13, pp.3, 2021, https://doi.org/10.3390/su13031559
  17. Micropollutant transformation and taxonomic composition in hybrid MBBR – A comparison of carrier-attached biofilm and suspended sludge vol.202, pp.None, 2021, https://doi.org/10.1016/j.watres.2021.117441