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Abstract
We consider the asymptotic results of the variance ratio statistic when the underlying processes have moving
average(MA) unit roots. This degenerate situation of zero spectral density near the origin cause the limit of the

variance ratio to become zero. Its asymptotic behaviors are different from non-degenerating case, where the
convergence rate of the variance ratio statistic is formally derived.

Keywords: Variance ratio test, moving average unit root, spectral density, degeneracy.

1. Introduction

The variance ratio(VR) statistic has been widely used to test for random walk hypothesis or for ef-
ficient market hypothesis in the context of economics and finance. Campbell et al. (1997) provide
excellent summary and review of the VR and its financial applications. Among many useful empirical
works, Lo and MacKinlay (1988) use the VR to examine the random walk hypothesis using the US
stock price data. In economics context, Cochrane (1988) also make use of the VR testing to investi-
gate the magnitude of random walk components in the GDP series. To figure out deterministic trend
components and random walk components out 6f certain economic time series have drawn a lot of
attention among economists, where the VR statistic is popularly used.

Define the second-order stationary process r, and let M compounded sums be r,(M) = r; + 11 +

-+« +7._p+1. The population VR is.defined as the ratio of the variance of M compounded sums and M
times the variance of r;,

Var(r(M))

(1.1)

For example, when two-periods are considered, we have VR(2) = 1 + p(1), where p(1) = R(1) /R(O),
and covariance function is given as

R(j) = E(re = pi)(ri—j — ), for p = E(r)) - (12

and R(0) = Var(r;) is the variance of r,. One is interested to test whether VR(2) = 1.
The VR can be also seen as

VR(M) = R(0)™! ) (1.3)

M-1 ]
R(Q) +2 1-=]|R(j
©+ ]Z;( L)RG)
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In order to see the limit of the VR as the number of periods M increases, we introduce the spectral
density function evaluated at the zero frequency, denoted as f(0),

1 ]
fO) = o Z R() (1.4)

(cf: Priestley, 1981). Then, the limit of the VR equals to

21£(0)
RO) -~

It is often assumed that the stationary processes r; have strictly positive spectrum near the origin,
say f(0) > 0. The resulting theoretical results have been well established (c¢f: Campbell ez al., 1997,
Ch.2; Andrews, 1991; Newey and West, 1994). On the other hand, we concentrate on the case of
f(0) = 0, which-has-been-little known in econometrics context. One popular example is that if a
certain process is trend stationary, '

(1.5)

lim VR(M) =

yi=a+bt+e, (1.6)
fort=1,2,...,T, where T is the sample size. Then, the first differenced series r; can be put as
rr=Y—Y-1=b+Ae, for Ae,=e —e, . .7

Thus, 7, reduces to have the zero spectral density evaluated at zero frequency, i.e., f(0) = 0. It then
follows that the limit of the VR simply becomes zero. This is typically known as moving average(MA)
unit roots. See Leybourne et al. (1996) and Saikkonen and Lukkonen (1993). The arguments can be
easily extended to MA(g) unit root processes with ¢ > 1. Another example includes first-differencing
fractionally integrated (long memory) processes with the memory parameter less than the unity.

In this work, we study theoretical properties of the VR when the series yields zero spectrum
near the origin, particularly focusing on the convergence rate of the VR statistic in comparison with
existing results of non-degenerate case.

2. Main Results

We verify the asymptotic order of magnitude of the sample VR statistic under degenerate case. The
sample VR statistic is written as

M-1 .
VR(M) = R(0)™ | R(0) + 2 (1—L)R' : 2.1
(M) = RO)™" |R©) + ]Z:, TILY @1
where sample covariances are defined as
1 T
R =+ Z (i = P(r-j = P,
t=|jl+1
where 7 = T} Z,T;’i 1, The limiting form,denoted as \7T{(oo) can be written as
— e 27£(0
VR(eo) = lim VR = 2O 2.2)
: M=o RO :
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where f(0) is a consistent estimator of f(0). Consider.a kernel-based spectral density estimator for

F),

7-1 .
0 =t Y k(L)RG), @.3)
f©® = @) j;r = JRO)

where, k(x) is a kemel function and M is a bandwidth parameter.

To see the asymptotic properties of the ﬁ(oo) particularly when the true f(0) = 0, we assume
that 7, is stationary Gaussian process throughout this work. As it is necessary to treat higher-order
expansions for kernel-based spectral density estimators, thus Gaussian assumptions significantly ease
derivation of asymptotic variance of f(0). Note that without Gaussianity, however, general depen-
dence of fourth order cumulants will arise, which are very difficult to handle. Velasco and Robinson
(2001) also assume Gaussianity in Edgeworth expansion of the studentized sample mean.

To show the main result, we impose some conditions for the VR statistic.

Assumption 1.

(a) k(x) : R — [-1, 1] is symmetric and continuous at zero with k(0) = 1, and the Fourier transform
of k(x) is defined as

KW =Q2nt F k(x)e " dx

forall A € [-n,n].

®) f AKNdA=0, forr=12,...,q—1, and #0, forr=gq

Assumption 1 lists a regularity condition for kernel functions. which is standard in the nonpara-
metric literature. The function K(2), a spectral window generator, has the property that f_ 7; KdA =1,
which is equivalent to k&(0) = 1. The moment condition in (b) can be equivalently understood as
derivative of its inverse Fourier transforms, k(e) evaluated at zero, that is to say, d"k(x)/dx"|;=0 = 0,
forr=1,2,...,q—1and # 0, for r = g, where k(x) = f_ f; K()e*'dA. This is related with higher-order
expansions of f(0).

Quadratic kernels such as Parzen and quadratic spectral kernel satisfy the above conditions with
g = 2. In our analysis, the value of g needs to be at least 4, which is directly related with higher-order
Taylor expansions of the estimators. For example, the following is the fourth-order kernel,

KQ) = %g [7(?)4 - 10(%)2 +3]. 2.4)

Other higher-order kernels with ¢ > 4 can be considered (e.g. Velasco and Robinson, 2001).
Also, we need some smoothness conditions for the spectral density function f(1)at A = 0.

Assumption 2,

DL IRGI <0 and 3" \JIRG) < o0, for g€ [0,00).

j=—o00 J=—o0
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The smoothness for f(e) near zero frequency is given by the g order generalized spectral deriva-
tive,

90 = @ny Y IFRG),  for g € [0,00), @5)

j=—o0

where g may not be integer-valued. The generalized spectral derivative f' @(0) is not necessarily equal
to g derivative since J@(0) = d?f(A)/dA%)=0. If g is even-numbered, then

F90) = (=1 f(0). 26)

For example, when g = 2, then f®(0) = - f)(0). If ¢ = 4, then f(0) = f4(0). The larger values of
g, the more smooth the spectral density function near origin. When f(0) = 0, it is necessary. to derive
higher-order expansions of the estimator near the zero frequency, which requires a large values of g.
Our main results need g > 4.

Now, we present the main result.

Theorem 1. Suppose Assumptions 1~2 hold, and M = C xT®, where 0 < C < 00,0 <a < 1,g2 4.
Under f(0) =0,

lim (7 x M*) Var(ﬁ(M)) = Q < oo,

M—o00

where Q = R(0)(167°)/3,(0) j;’; W K2 (wdu.

The Theorem 1 implies that the convergence rate of the VR test with sufficiently large values of

Mis VT x M3, i.e.,

]
Jim (T x M*)*VR@M) = 0,(1). @7
The above result is fundamentally different from existing asymptotic results, which show that conver-
gence rate of the VR equals to VT x M. In the non-degenerate case, it is well known that the sample
VR has convergence rate equal to VT’ X M (c¢f: Campbell er al., 1997). The convergence rate derived
in Theorem 1 is mainly due to degeneracy of f(0), requiring certain higher-order expansions of the
spectrum near zero frequency. It is immediate that if we use the sample VR with the rate VT x M for
over-differenced series, then the test behaves as O,(M~!) and decays to zero as M goes to the infinity.
As a digression, based on this result, it is possible to obtain asymptotic normality of the VR with
additional assumptions on data generating processes (cf: Phillips and Solo, 1992; Lee, 2009). As our
main focus is the asymptotic order of magnitude in the VR test statistic, we skip the part of normality.

3. Conclusion

We study the variance ratio test statistic when the underlying processes have moving average unit roots
such as over-differenced series, generating zero spectrum at the zero frequency. Under degeneracy,
the convergence rate of the variance ratio statistic is derived, which is different from the known rate
in non-degenerate case. ’
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Appendix:
Proof of Theorem 1: The sample variance ratio test is given as
VR(e0) = RO)™' 2m)£(0). (A1)

First, we show that the limit of Var(f(0)) = 0 when f(0) = 0. Given Gaussian assumption, we get

M-1 M-1 . Y
var(f@)= > 3] k(i)k(]M)COv[ie(j),R(j')], (A2)

M
J=I-M j=1-M

where

~

-1
Cov[R().R(GN] =T >\ [RWRG+ ] - )+ Rth+ IR~ (1 +o(1)].
h=1-T

I
—

For the exact form of Cov[R(j), R(j’)], see, for example, Priestley (1981, p.326). Then, we have

Var (f(0)) = (Vir + Var)(1 + o(1)), (A3)
where
M-1 M-1 j 7 T-1
Virp =T k(—)k(—) RMWRG + § - J),
j=1-M j’ﬂZ—M M M h=1-T
M-1 M-1 i 7 T-1
Vo = T k(—)k(—) R(h+ )R - j).
j=1-M ji=1-M M M h_:zl—:r

To ease the technical proof, we treat k(j/M) = 0 for j > M. This does not affect the main results.
As for the first term V7, we use Fourier and inverse Fourier transforms to obtain

-1 M-1 . M-l g B
TxVir= > R(h) k(i) | MEMDE RO - jda
h=1=T jol-M M MY
-1 -1 .
_ {3 -1 -1 J
= () |0 3 Roo||@o Y k( M)]
h=1-T JEI-M

-1

" -
X [ f MEK(M)Q2r)™! Z Rh+j - j)e-i(hﬂ’—j)xei(h—md 1
x A

which can be further decomposed as follows,

7-1 M-1

et Y k(A—Jl)] [ f " MK(Mﬂ)f(/l)e"(”‘f)d/l]

j=1-M

TX V= (2;:3) [(2@*1 R(h)

h=1-T

= (271'3) f " MEKMA)f(A) [f(/l)~(27r)‘1 ZR(h)e’“ [MK(M))dA

h>T

= Air - Byr,
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where
Ayr = (2n°) f " FAOMP KX (M A)dA (A4)
Bir = (2 f SQM*K* (M) ZR(h)e"M
Jhl2T

and K(2) = 2m)! f; k(x)e"*dx and MK(MA) = 2n)™! f_‘: k(x/M)e~*dx, (e.g., Priestley, 1981,
p-447).

Below we show that A,y is a dominant term as big as O(M~3). Using change of variable tech-
niques, we obtain

(27.3 f FHOMPK* (M)A (A.5)
(22) M f f2 K2(u)du

B Jo g

=2 M £5,(0) f WK wdu + 0(M7),
-

where the third line follows from Taylor expansions of the squared ‘f(O), given that f(0) = fi,(0) =
On the other hand, for B;r, we have

Bir < (2n)? Z R(h) f FQOM2K*(MA)dA (A.6)

[>T

< (2n)? Z 1h7R (k) f FYMAKXMAdA.

k2T

By Taylor expansions, it is written as
T
f FAM* KA (MAdA=M f” f ad Kz(u)du
-

= M[( ) f© f' Kz(u)du] +o(M*).

Thus, we have |7 f()M2K*(MA)dA =O(M~") and as a result,
Bir =0(T™*M ") =0 (M?), (A7)
given that @ < g/2. ’

Similar arguments can be applied to Vo7 term above by repeatmg the same techniques. The dom-
inant term in V7 is identical to that in V,7. Therefore, we finally obtain

(T x M?) [V + Vor] = (42°) £3,(0) f " K @du + o), (AB)
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which leads to

M-

lim (T x M*) Var (\71‘1(00)) = R(0)*(167°) 3,(0) f WK (u)du. (A.9)
This completes the proof of the Theorem 1.
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