초임계 유체를 이용한 고분자 합성 연구

Synthesis of Polymers in Supercritical Carbon Dioxide

  • 이현석 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 김진웅 ((주)아모레퍼시픽 기술연구원 피부과학연구소)
  • 투고 : 2010.03.13
  • 심사 : 2010.03.22
  • 발행 : 2010.03.30

초록

본 총설에서는 이산화탄소에 용해력이 있는 새로운 탄화수소 공중합체의 설계와 개발, 그리고 생체친화성 고분자의 초임계 중합을 위한 효과적인 계면활성제로써의 성능에 대해 소개하고, 초입계 유체의 기본적 개념을 용매로서의 성질과 고분자 합성분야에서의 응용적인 측면에서 기술한다. 이산화탄소에 높은 용해력을 지닌 탄화수소 고분자 중합을 위해 새로운 리빙라디칼 중합기술을 사용하였고, 이 물질들의 이산화탄소 내에서의 상거동을 측정하여 공중합체의 분자량과 구조가 용해도에 미치는 영향을 조사하였다. 초임계 분산중합에서의 효과적인 계면활성력을 확인하였고, 성장하는 입자의 안정화에 필요한 키 파라미터를 결정하기 위해 다양한 조건에서 실험을 수행하였으며, 화장품 분야에 응용될 수 있는 새로운 구조의 친환경 고분자 소재 개발에 이 연구가 작용될 수 있다는 잠재적인 가능성을 확인하였다.

This review shows the design and the development of new $CO_2$-soluble hydrocarbon copolymers which can be used as effective stabilizers for successful dispersion polymerizations of bio-compatible materials in supercritical carbon dioxide ($scCO_2$). The basic concepts of supercritical fluid including its solvent properties and applications in polymer synthesis are described. We report the facile synthesis of highly soluble hydrocarbon based copolymers, prepared with good control via controlled free radical polymerization from readily accessible and commercially available monomers. The phase behaviour of these materials was monitored in pure $CO_2$ to investigate how the molecular weights and the composition of the copolymers affect their solubility in $CO_2$. Their activity as a stabilizer was then tested in dispersion polymerization of N-vinyl pyrrolidone in $CO_2$ at various reaction conditions to identify the key parameters required for a successful dispersion stabilization of growing PVP particles. Some prospective potentials of this research which can be applied in developing new polymer materials in an environmentally-friendly fashion for use in cosmetics are also discussed.

키워드

참고문헌

  1. A. I. Cooper, Journal of Materials Chemistry, 10(2), 207 (2000). https://doi.org/10.1039/a906486i
  2. S. G. Kazarian, Polymer Science, 42(1), 78 (2000).
  3. J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chemical Reviews, 99(2), 543 (1999). https://doi.org/10.1021/cr9700336
  4. H. M. Woods. M. Silva, C. Nouvel, K. M. Shakesheff, and S. M. Howdle, Journal of Materials Chemistry, 14(11), 1663 (2004). https://doi.org/10.1039/b315262f
  5. E. J. Beckman, Industrial & Engineering Chemistry Research, 42(8), 1598 (2003). https://doi.org/10.1021/ie0300530
  6. A. I. Cooper and J. M. DeSimone, Current Opinion in Solid State & Materials Science. 1(6). 761 (1996). https://doi.org/10.1016/S1359-0286(96)80100-8
  7. A. I. Cooper, Green Chemistry, 1(6), G167 (1999). https://doi.org/10.1039/a909911e
  8. S. M. Howdle and A. I. Cooper, $CO_2$ Under Pressure - A Clean Solution for Polymer Processing, Materials World, pp. 10-12 (2000).
  9. J. A. Lopes, D. Gourgouillon, P. J. Pereira, A. M. Ramos, M. N. da Ponte, Journal of Supercriticai Flwds, 16(3), 261 (2000). https://doi.org/10.1016/S0896-8446(99)00033-9
  10. S. Kim, Y. S. Kim, and S. B. Lee, Journal of Supercritical Fluids, 13(1-3). 99 (1998). https://doi.org/10.1016/S0896-8446(98)00040-0
  11. D. L. Tomasko. H. B. Li, D. H. Liu, X. M. Han, M. J. Wingert, L. J. Lee, and K. W. Koelling, Industrial & Engineering Chemistry Research, 42(25), 6431 (2003). https://doi.org/10.1021/ie030199z
  12. H. -P. Hentze and M. Antonietti, Reviews in Molecular Biotechnology, 90, 27 (2002). https://doi.org/10.1016/S1389-0352(01)00046-0
  13. J. Q. Pham, K. P. Johnston, and P. F. Green. Journal of Physical Chemistry B, 108(11), 3457 (2004). https://doi.org/10.1021/jp036765l
  14. B. L. West, S. G. Kazarian, M. F. Vincent. N. H. Brantley, and C. A. Eckert. Journal of Applied Polymer Science. 69(5). 911 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980801)69:5<911::AID-APP10>3.0.CO;2-R
  15. Y. Sato, T. Takikawa. S. Takishima. and H. Masuoka. Journal of Supercritical Fluids. 19(2). 187 (2001). https://doi.org/10.1016/S0896-8446(00)00092-9
  16. R. G. Wissinger and M. E. Paulaitis, Journal of Polymer Science Part B-Polymer Physics, 25(12), 2497 (1987). https://doi.org/10.1002/polb.1987.090251206
  17. Y. P. Handa and Z. Y. Zhang, Cellular Polymers. 21(4). 221 (2002).
  18. A. I. Cooper, Advanced Materials, 15(13), 1049 (2003). https://doi.org/10.1002/adma.200300380
  19. A. I. Cooper. Advanced Materials, 13(14). 1111 (2001). https://doi.org/10.1002/1521-4095(200107)13:14<1111::AID-ADMA1111>3.0.CO;2-L
  20. D. Bratton. M. Brown. and S. M. Howdle. J. Polyrn. Sci., Part A: Polyrn. Chem., 43(24). 6573 (2005). https://doi.org/10.1002/pola.21117
  21. D. Bratton. M. Brown, and S. M. Howdle. Macromolecules, 38(4). 1190 (2005). https://doi.org/10.1021/ma0484072
  22. F. C. Loeker, C. J. Duxbury, R. Kumar, W. Gao, R. A. Gross, and S. M. Howdle, Macromolecules, 37(7), 2450 (2004). https://doi.org/10.1021/ma0349884
  23. J. M. DeSimone, E. E. Maury, Y. Z. Menceloglu, J. B. McClain, T. J. Romack, and J. R. Combes, Science. 265(5170), 356 (1994). https://doi.org/10.1126/science.265.5170.356
  24. Z. Guan. J. R. Combes. Y. Z. Menceloglu, and J. M. DeSimone. Macromolecules, 26(11). 2663 (1993). https://doi.org/10.1021/ma00063a003
  25. J. L. Kendall. D. A. Canelas. J. L. Young, and J. M. DeSimone, Chem. Rev., 99(2). 543 (1999). https://doi.org/10.1021/cr9700336
  26. T. J. Romack, J. R. Combes, and J. M. DeSimone. Macromolecules. 28(5), 1724 (1995). https://doi.org/10.1021/ma00109a057
  27. D. A. Canelas and J. M. DeSimone, Macromolecules. 30(19). 5673 (1997). https://doi.org/10.1021/ma970579u
  28. Y. S. T. Arai and T. Takebayashi. Supercritical Fluids: Molecular Interactions, Physical Properties and New Applications. Spinger: Berlin (2002).
  29. J. A. Darr and M. Poliakoff, Chemical Reviews, 99(2), 495 (1999). https://doi.org/10.1021/cr970036i
  30. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction: Priciples and Practice. Butterworth-Heineman: Boston (1994).
  31. C. F. Kirby and M. A. McHugh, Chemical Reviews, 99(2), 565 (1999). https://doi.org/10.1021/cr970046j
  32. M. L. O'Neill, Q. Cao, R. Fang, K. P. Johnston. S. P. Wilkinson, C. D. Smith, J. L. Kerschner, and S. H. Jureller. Industrial & Engineering Chemistry Research, 37(8), 3067 (1998). https://doi.org/10.1021/ie980010x
  33. P. G. Jessop and W. Leitner. Chemical Synthesis Using Supercritical Fluids. Wiley-VCH: Weinheim (1999).
  34. D. A. Newman, T. A. Hoefling. R. R. Beitle. E. J. Beckman. and R. M. Enick, Journal of Supercritical Fluids, 6(4). 205 (1993). https://doi.org/10.1016/0896-8446(93)90028-V
  35. C. Lepilleur. E. J. Beckman. H. Schonemann. and V. J. Krukonis. Fluid Phase Equilibria, 134(1-2). 285 (1997). https://doi.org/10.1016/S0378-3812(97)00055-1
  36. J. A. Hyatt. Journal of Organic Chemistry, 49(26), 5097 (1984). https://doi.org/10.1021/jo00200a016
  37. J. M. Walsh, G. D. Ikonomou. and M. D. Donohue, Fluid Phase Eqwlibria. 33(3), 295 (1987). https://doi.org/10.1016/0378-3812(87)85042-2
  38. F. Rindfleisch, T. P. DiNoia, and M. A. McHugh. Journal of Physical Chemistry. 100(38). 15581 (1996). https://doi.org/10.1021/jp9615823
  39. F. Rindfleisch, T. P. DiNoia. and M. A. McHugh, J. Phys. Chem-US. 100(38). 15581 (1996). https://doi.org/10.1021/jp9615823
  40. T. P. Dinoia, S. E. Conway, J. S. Lim. and M. A. McHugh, Journal of Polymer Science Part B-Polymer Physics. 38(21), 2832 (2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2832::AID-POLB120>3.0.CO;2-2
  41. N. Sundararajan. S. Yang, K. Ogino. S. Valiyaveettil, J. G. Wang, X. Y. Zhou. C. K. Ober, S. K. Obendorf, and R. D. Allen. Chemistry of Materials, 12(1). 41 (2000). https://doi.org/10.1021/cm9902467
  42. C. A. Mertdogan. T. P. DiNoia. and M. A. McHugh, Macromolecules, 30(24). 7511 (1997). https://doi.org/10.1021/ma970574x
  43. M. E. Wright. K. M. Lott. M. A. McHugh, and Z. H. Shen. Macromolecules. 36(7). 2242 (2003). https://doi.org/10.1021/ma021615e
  44. R. Enick. E. Beckman. A. Yazdi. V. Krukonis, H. Schonemann. and J. Howell. Journal of Supercritical Fluids. 13(1-3), 121 (1998). https://doi.org/10.1016/S0896-8446(98)00043-6
  45. G. Luna-Barcenas, S. Mawson. S. Takishima. J. M. DeSimone. I. C. Sanchez. and K. P. Johnston, Fluid Phase Equilibria, 146(1-2). 325 (1998). https://doi.org/10.1016/S0378-3812(98)00215-5
  46. R. Fink and E. J. Beckman, Journal of Supercritical Fluids, 18(2). 101 (2000). https://doi.org/10.1016/S0896-8446(00)00052-8
  47. Z. Bayraktar and E. Kiran. Journal of Applied Polymer Science. 75(11), 1397 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1397::AID-APP12>3.0.CO;2-F
  48. K. Liu and E. Kiran, Journal of Supercritical Fluids, 16(1), 59 (1999). https://doi.org/10.1016/S0896-8446(99)00016-9
  49. Y. B. Melnichenko, E. Kiran. G. D. Wignall. K. D. Heath, S. Salaniwal, H. D. Cochran, and M. Stamm, Macromolecules, 32(16), 5344 (1999). https://doi.org/10.1021/ma990640q
  50. Y. Xiong and E. Kiran, Polymer, 36(25). 4817 (1995). https://doi.org/10.1016/0032-3861(95)99298-9
  51. A. Dardin, J. M. DeSimone, and E. T. Samulski, Journal of Physical Chemistry E, 102(10). 1775 (1998). https://doi.org/10.1021/jp972127p
  52. R. Fink, D. Hancu, R. Valentine, and E. J. Beckman, Journal of Physical Chemistry B, 103(31), 6441 (1999). https://doi.org/10.1021/jp990333m
  53. S. G. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta, and C. A. Eckert, Journal of the American Chemical Society, 118(7), 1729 (1996). https://doi.org/10.1021/ja950416q
  54. J. C. Meredith, K. P. Johnston, J. M. Seminario, S. G. Kazarian, and C. A. Eckert, Journal of Physical Chemistry, 100(26), 10837 (1996). https://doi.org/10.1021/jp953161b
  55. C. Drohmann and E. J. Beckman, Journal of Supercritical Fluids, 22(2), 103 (2002). https://doi.org/10.1016/S0896-8446(01)00111-5
  56. Z. Shen, M. A. McHugh, J. Xu, J. Belardi, S. Kilic, A. Mesiano, S. Bane, C. Karnikas, E. Beckman, and R. Enick, Polymer, 44(5), 1491 (2003). https://doi.org/10.1016/S0032-3861(03)00020-X
  57. H. Shiho and J. M. Desimone, J. Polym. Sci., Part A: Polym. Chem., 38(7), 1139 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000401)38:7<1139::AID-POLA12>3.0.CO;2-3
  58. J. R. Combes, Z. Guan, and J. M. DeSimone, Macromolecules, 27(3), 865 (1994). https://doi.org/10.1021/ma00081a036
  59. J. M. Desimone, Z. Guan, and C. S. Elsbernd, Science, 257(5072), 945 (1992). https://doi.org/10.1126/science.257.5072.945
  60. M. McCoy, Chemical & Engineering News, 10 (1999).
  61. M. L. O'Neill, M. Z. Yates, K. P. Johnston, C. D. Smith, and S. P. Wilkinson, Macromolecules, 31(9), 2848 (1998). https://doi.org/10.1021/ma971315a
  62. G. Li, M. Z. Yates, K. P. Johnston, and S. M. Howdle, Macromolecules, 33(11), 4008 (2000). https://doi.org/10.1021/ma9921504
  63. J. M. Desimone, E. E. Maury, Y. Z. Menceloglu, J. B. McClain, T. J. Romack, and J. R. Combes, Science, 265(5170), 356 (1994). https://doi.org/10.1126/science.265.5170.356
  64. K. A. Consani and R. D. Simth, The Journal of Supercritical Fluids, 3, 51 (1990). https://doi.org/10.1016/0896-8446(90)90008-A
  65. Y. L. Hsiao, E. E. Maury, J. M. Desimone. S. Mawson, and K. P. Johnston, Macromolecules, 28(24), 8159 (1995). https://doi.org/10.1021/ma00128a028
  66. T. M. Yong, W. P. Hems, J. L. M. vanNunen, A. B. Holmes. J. H. G. Steinke. P. L. Taylor. J. A. Segal, and D. A. Griffin, Chemical Communications, (18), 1811 (1997). https://doi.org/10.1039/a705399a
  67. W. P. Hems, T. M. Yong, J. L. M. van Nunen, A. I. Cooper, A. B. Holmes, and D. A. Griffin, Journal of Materials Chemistry, 9(7), 1403 (1999). https://doi.org/10.1039/a901105f
  68. H. Shiho and J. M. DeSimone, Journal of Polymer Science Part a-Polymer Chemistry, 38(7), 1146 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000401)38:7<1146::AID-POLA13>3.0.CO;2-8
  69. Y. L. Hsiao and J. M. DeSimone, Journal of Polymer Science Part a-Polymer Chemistry, 35(10), 2009 (1997). https://doi.org/10.1002/(SICI)1099-0518(19970730)35:10<2009::AID-POLA16>3.0.CO;2-K
  70. D. A. Canelas, D. E. Betts, J. M. DeSimone, M. Z. Yates, and K. P. Johnston, Macromolecules, 31(20), 6794 (1998). https://doi.org/10.1021/ma980596z
  71. H. Shiho and J. M. DeSimone, Journal of Polymer Science Part a-Polymer Chemistry, 37(14), 2429 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2429::AID-POLA17>3.0.CO;2-B
  72. K. K. Kapellen, C. D. Mistele, and J. M. DeSimone, Macromolecules, 29(1), 495 (1996). https://doi.org/10.1021/ma951299m
  73. K. A. Shaffer, T. A. Jones, D. A. Canelas, J. M. DeSimone, and S. P. Wilkinson, Macromolecules, 29(7), 2704 (1996). https://doi.org/10.1021/ma9516798
  74. M. L. O'Neill, M. Z. Yates, K. P. Johnston, C. D. Smith, and S. P. Wilkinson, Macromolecules, 31(9), 2838 (1998). https://doi.org/10.1021/ma971314i
  75. C. Lepilleur and E. J. Beckman, Macromolecules, 30(4), 745 (1997). https://doi.org/10.1021/ma960764s
  76. F. Rindfleisch, R. Becker, and W. -D. Hergeth, Polymeric Materials Science and Engineering, 80, 518 (1999).
  77. A. I. Cooper, W. P. Hems, and A. B. Holmes, Macromolecular Rapid Communications, 19(7), 353 (1998). https://doi.org/10.1002/(SICI)1521-3927(19980701)19:7<353::AID-MARC353>3.0.CO;2-G
  78. A. I. Cooper, W. P. Hems, and A. B. Holmes, Macromolecules, 32(7), 2156 (1999). https://doi.org/10.1021/ma981494b
  79. A. Gregory, Controlled Polymerisations in Supercritical Carbon Dioxide. University of Nottingham, nottingham (2007).
  80. Z. Wang, Y. J. Yang, Q. Dong, T. Liu, and C. P. Hu, Polymer, 47(22), 7670 (2006). https://doi.org/10.1016/j.polymer.2006.09.011
  81. H. Shiho and J. M. DeSimone, Macromolecules, 33(5), 1565 (2000). https://doi.org/10.1021/ma990737c
  82. D. A. Canelas, D. E. Betts, and J. M. DeSimone, Macromolecules, 29(8), 2818 (1996). https://doi.org/10.1021/ma951642n
  83. R. Wang and H. M. Cheung, J. Appl. Polym. Sci., 93(2), 545 (2004). https://doi.org/10.1002/app.20476
  84. H. Shiho and J. M. Desimone, J. Polym. Sci., Part A: Polym. Chem., 38(7), 1146 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000401)38:7<1146::AID-POLA13>3.0.CO;2-8
  85. H. Tai, W. Wang, and S. M. Howdle, Macromolecules, 38(5), 1542 (2005). https://doi.org/10.1021/ma048270f
  86. J. DeSimone and L. Riddick, Proceedings - NOB-CChE, 26, 53 (1999).
  87. P. A. Mueller, G. Storti, M. Morbidelli. I. Costa, A. Galia, O. Scialdone, and G. Filardo, Maexumolecules, 39(9), 6483 (2006).
  88. Y. Yang, Q. Dong, Z. Wang, C. Shen, Z. Huang, H. Zhu, T. Liu, and C. P. Hu, J. Appl. Polym. Sci., 102(6), 5640 (2006). https://doi.org/10.1002/app.24989
  89. F. Rindfleisch, R. Becker, and W.-D. Hergeth, Polym. Mater. Sci. Eng., 80, 518 (1999)
  90. K. A. Shaffer, T. A. Jones, D. A. Canelas, J. M. DeSimone, and S. P. Wilkinson, Macromolecules, 29(7), 2704 (1996). https://doi.org/10.1021/ma9516798
  91. H. M. Woods, C. Nouvel, P. Licence, D. J. Irvine, and S. M. Howdle, Macromolecules, 38(8), 3271 (2005). https://doi.org/10.1021/ma048406+
  92. M. R. Giles, R. M. T. Griffiths, D. J. Irvine, and S. M. Howdle, Eur. Polym. J., 39(9), 1785 (2003). https://doi.org/10.1016/S0014-3057(03)00102-2
  93. T. Carson, K. Lizotte, and J. M. Desimone, Macromolecules, 33(6), 1917 (2000). https://doi.org/10.1021/ma991222o
  94. H. Shiho and J. M. DeSimone, Macromolecules, 34(5), 1198 (2001). https://doi.org/10.1021/ma0010074
  95. W. Wang, R. M. T. Griffiths, A. Naylor, M. R. Giles, D. J. Irvine, and S. M. Howdle, Polymer, 43(25). 6653 (2002). https://doi.org/10.1016/S0032-3861(02)00579-7
  96. W. Wang, M. R. Giles, D. Bratton, D. J. Irvine, S. P. Armes, J. V. W. Weaver, and S. M. Howdle, Polymer, 44(4), 3803 (2003). https://doi.org/10.1016/S0032-3861(03)00310-0
  97. Z. Ma and P. Lacroix-Desmazes, Polymer, 45(20), 6789 (2004).
  98. H. Shiho and J. M. DeSimone, J. Polym. Sci., Part A: Polym. Chem., 38(20), 3783 (2000). https://doi.org/10.1002/1099-0518(20001015)38:20<3783::AID-POLA90>3.0.CO;2-X
  99. E. J. Beckman, Chemical Communications (Cambridge, United Kingdom), (17), 1885 (2004). https://doi.org/10.1039/b404406c
  100. A. L. C. Burke, G. Maier, and J. M. DeSimone, Abstracts of Papers of the American Chemical Society, 211, 152-PMSE (1996).
  101. T. Sarbu, T. J. Styranec, and E. J. Beckman, Industrial and Engineering Chemistry Research, 39(12), 4678 (2000). https://doi.org/10.1021/ie0003077
  102. M. R. Nelson and R. F. Borkman, Journal of Physical Chemistry A, 102(40), 7860 (1998). https://doi.org/10.1021/jp981824u
  103. P. Raveendran and S. L. Wallen, Journal of the American Chemical Society, 124, 7274 (2002). https://doi.org/10.1021/ja025508b
  104. H. M. Woods, Hydrocarbon Stabilisers for Use in Supercritical Carbon Dioxide. The University of Nottingham (2005).
  105. G. S. Moad, D. H., The Chemistry of Free Radical Polymerization. Pergamon: Oxford (1995).
  106. M. Wakioka, K.-Y. Baek, T. Ando, M. Kamigaito, and M. Sawamoto, Macromolecules, 35(2), 330 (2002). https://doi.org/10.1021/ma0115444
  107. D. Batt-Coutrot, D. M. Haddleton, A. P. Jarvis, and R. L. Kelly, European Polymer Journal, 39(12), 2243 (2003). https://doi.org/10.1016/S0014-3057(03)00179-4
  108. S. H. Qin and K. Y. Qiu, Polymer, 42(7), 3033 (2001). https://doi.org/10.1016/S0032-3861(00)00724-2
  109. Z. J. Lu, X. Y. Huang, and J. L. Huang, Journal of Polymer Science Part a-Polymer Chemistry, 37(14), 2595 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2595::AID-POLA33>3.0.CO;2-N
  110. X. Y. Huang, Z. J. Lu, and J. L. Huang, Polymer, 39(6-7), 1369 (1998). https://doi.org/10.1016/S0032-3861(97)00405-9
  111. B. Boutevin, M. Macret, C. Maubert, Y. Pietrasanta, and M. Tanesie, Tetrahedron Letters, (33), 3019 (1978).
  112. E. Rizzardo, J. Chiefari, R. T. A. Mayadunne, G. Moad, and S. H. Thang, ACS Symposium Series, 768(Controlled/Living Radical Polymerization), 278 (2000).
  113. D. Charmot. P. Corpart, H. Adam, S. Z. Zard, T. Biadatti, and G. Bouhadir, Macromolecular Symposia, 150(Polymers in Dispersed Media), 23 (2000).
  114. G. Moad, E. Rizzardo, and S. H. Thang, Australian Journal of Chemistry, 58(6), 379 (2005). https://doi.org/10.1071/CH05072
  115. W. Smulders, R. G. Gilbert, M. J. Monteiro, Macromolecules, 36(2), 4309 (2003). https://doi.org/10.1021/ma026020y
  116. D. Boschmann and P. Vana, Polymer Bulletin (Heidelberg, Germany), 53(4), 231 (2005). https://doi.org/10.1007/s00289-005-0338-9
  117. M. H. Stenzel, L. Cummins, G. E. Roberts, T. P. Davis, P. Vana, and C. Barner-Kowollik, Macromolecular Chemistry and Physics, 204(9), 1160 (2003). https://doi.org/10.1002/macp.200390089
  118. M. R. Wood, D. J. Duncalf, S. P. Rannard, and S. Perrier, Organic Letters, 8 ( 4), 553 (2006). https://doi.org/10.1021/ol0525617
  119. B. Tan, H. M. Woods, P. Licence, S. M. Howdle, and A. I. Cooper, Macromolecules, 38(5), 1691.
  120. T, Berger, B, McGhee, U, Scherf, and W, Steffen, Macromolecules, 33(10), 3505 (2000). https://doi.org/10.1021/ma992014z
  121. A. Galia, A. G., V. Iaia, and G. Filardo. J. Polym. Sci. Pol. Chern., 42, 173 (2004). https://doi.org/10.1002/pola.10995
  122. H. Lee, E. Terry, M. Zong, N. Arrowsmith, S. Perrier, K. J. Thurecht, and S. M. Howdle, J. Am. Chem. Soc., 130(37), 12242 (2008). https://doi.org/10.1021/ja8046156
  123. B. I. Bomer, Houben-Weyl : Methoden der Organischen Chemie. Stuttgart, Vol. E20/2 (1987).