생식생장기의 고온장해가 콩의 생육과 질소 및 이온함량에 미치는 영향

Effect of High Temperature during Reproductive Growth Period on Soybean Growth, Nitrogen and Cation Content

  • 박기웅 (한국생명공학연구원 바이오평가센터) ;
  • 안태환 (충남대학교 농업생명과학대학) ;
  • 조진웅 (충남대학교 농업생명과학대학)
  • Park, Kee-Woong (Bio-Evaluation Center, KRIBB) ;
  • Ahn, Tae-Hwan (Collage of Agriculture and Life Science, Chungnam National University) ;
  • Cho, Jin-Woong (Collage of Agriculture and Life Science, Chungnam National University)
  • 투고 : 2009.09.11
  • 발행 : 2010.03.31

초록

본 연구는 생식생장기의 고온스트레스에 의한 콩의 생육과 수량에 미치는 영향을 구명하고자 대립종인 황금콩과 소립종인 풍산나물콩을 이용하여 수행하였다. 고온처리에 따라 두 품종 모두 초장은 증가하였으나 엽면적 및 건물중은 크게 감소하였다. 고온처리에 따라 개체당 협수는 감소하지 않았으나 잎수와 100립중이 감소하여 전체 수량이 황금콩과 풍산나물콩 모두 약 45% 감소하였다. 또한 잎, 줄기, 뿌리의 질소함량에서도 고온처리에 의한 감소를 보여 주고 있다.

This study was conducted to investigate the effect of high-temperature during the reproductive growth period on the soybean growth and yield. Two soybean cultivars, Hwangkeumkong (HKK) and Pungsannamulkong (PSNK) were used in this study. By high-temperature treatment, plant height was increased in the two soybean cultivars, however, leaf area and dry weight were greatly reduced. Number of pod per plant was not changed by high-temperature treatment. However, number of seeds and 100 seed weight were reduced in two soybean cultivars. As compared with control, yield were decreased by 45% in both HKK and PSNK. It was also appeared that nitrogen contents in leaf, stem, and root of the HKK and PSNK were decreased by high-temperature treatment.

키워드

참고문헌

  1. 기상연구소. 2004. 기후변화협약 대응 지역기후 시나리오 산출 기술개발(III), 기상연구소.
  2. 권영아, 권원태, 부경온, 최영은. 2007. A1B 시나리오 자료를 이용한 우리나라 아열대 기후구 전망. 대한지리학회지 42(3): 355-367.
  3. 박관수, 안태환, 조진웅. 2009. 생식생장기에 지하수위 처리가 콩의 생육과 질소 및 몇가지 양이온 함량에 미치는 영향. 한국작물학회지. 54: 225-230.
  4. Ahmed, F. E., A. E. Hall and D. A. Demason. 1992. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am. J. Bot. 79: 784-791. https://doi.org/10.2307/2444945
  5. Ashley D. A. and H. R. Boerma. 1989. Canopy photosynthesis and its association with seed yield in advanced generations of a soybean cross. Crop Sci. 29: 1042-1045. https://doi.org/10.2135/cropsci1989.0011183X002900040044x
  6. Boote, K. J., N. B. Pickering, and L. H. Jr. Allen. 1997. Plant modeling : Advances and gaps in our capability to predict future crop growth and yield. In : Allen, L. H., Jr, M. B. Kirham, D. M. Olszyk, and C. E. Whitman.(eds). Advances in Carbon Dioxide Effects Reserch. ASA Special Publication No. 61, ASA-CSSA-SSSA, Madison, Wisconsin, pp. 179-228.
  7. Egli, D. B., D. M. TeKrony, J. J. Heitholt, and J. Rupe. 2005. Air temperature during seed filling and soybean seed germination and vigor. Crop Sci. 45: 1329-1335. https://doi.org/10.2135/cropsci2004.0029
  8. Ferris, R., T. R. Wheeler, P. Hadley, and R. H. Ellis. 1998. Recovery of Photosynthesis after Environmental Stress in Soybean Grown under Elevated CO2. Crop Sci. 38: 948-955. https://doi.org/10.2135/cropsci1998.0011183X003800040012x
  9. Gibson, L. R. and R. E. Mullen. 1996. Soybean seed quality reductions by high day and night temperature. Crop Sci. 36: 1615-1619. https://doi.org/10.2135/cropsci1996.0011183X003600060034x
  10. Gross, Y. and J. Kigel. 1994. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res. 26: 201-212.
  11. Huang, B. R., and Xu, Q. 2000. Root growth and nutrient status of creeping bentgrass cultivars differing in heat tolerance as influenced by supraoptimal shoot and root temperature. J. Plant Nutr. 23: 979-990. https://doi.org/10.1080/01904160009382075
  12. Hofstra, G., and J. D. Hesketh. 1969. Effects of temperature on the gas exchange of leaves in the light and dark. Planta. 85: 228–237. https://doi.org/10.1007/BF00389400
  13. Hugria, M., and M. A. T. Vargas. 2000. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. 65: 151-164. https://doi.org/10.1016/S0378-4290(99)00084-2
  14. Lauer, M. J. and R. Shibles. 1987. Soybean leaf photosynthetic response to changing sink demand. Crop Sci. 27: 1197–1199. https://doi.org/10.2135/cropsci1987.0011183X002700060021x
  15. Marchner, H. 1995. Mineral nutriention of higher plants. Second edtion. Academic press. pp. 626-641.
  16. Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie. 2005. The effect of temperature during the repropductive on development of reproductive organs and occurrence of delayed stem senescence in soybean. Jpn. J. Crop Sci. 74: 339-343. https://doi.org/10.1626/jcs.74.339
  17. Prasad, P. V. V., P. Q. Craufurd and R. J. Summerfield. 1999. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann. Bot. 84: 381-386. https://doi.org/10.1006/anbo.1999.0926
  18. Shiraiwa, T., M. Sakashita, Y. Yagi, and T. Horie. 2006. Nitrogen fixation and seed yield in soybean under moderate high-temperature stress. Plant Prod. Sci. 9: 165-167. https://doi.org/10.1626/pps.9.165
  19. Thomas, J. M. G., K. J. Boote, L. H. Allen, Jr., M. Gallo-Meagher, and J. M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transript abundance. Crop Sci. 43: 1548-1557. https://doi.org/10.2135/cropsci2003.1548
  20. Vu, J. C. V., L. H. Allen, K. J. Boote and G. Bowes. 1997. Effects of elevated $CO_2$ and temperature on photosynthesis and Rubisco in rice and soybean. Plant, Cell and Environ. 20: 68-76. https://doi.org/10.1046/j.1365-3040.1997.d01-10.x
  21. Wallace, S. U. 1988. Soybean seedling emergence at high temperatures. Plant and Soil 109: 139-140. https://doi.org/10.1007/BF02197594