DOI QR코드

DOI QR Code

Molecular Genetic Classification of Hypsizigus marmoreus and Development of Strain-specific DNA Markers

느티만가닥버섯의 분자유전학적 분류 및 품종특이적 DNA 마커 탐색

  • Lim, Yun-Jeong (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Lee, Chang-Yun (Greenpeace Mushroom Co.) ;
  • Park, Jeong-Eun (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Kim, Sang-Woo (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Lee, Hyun-Sook (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
  • 임윤정 (경상대학교 미생물학과 및 생명과학연구원) ;
  • 이창윤 (그린피스버섯연구소) ;
  • 박정은 (경상대학교 미생물학과 및 생명과학연구원) ;
  • 김상우 (경상대학교 미생물학과 및 생명과학연구원) ;
  • 이현숙 (경상대학교 미생물학과 및 생명과학연구원) ;
  • 노현수 (경상대학교 미생물학과 및 생명과학연구원)
  • Received : 2010.06.01
  • Accepted : 2010.06.17
  • Published : 2010.06.30

Abstract

We have attempted to verify 30 strains of Hypsizigus marmoreus from various mushroom stocks in Korea using random amplified polymorphic DNA (RAPD) methodology. Chromosomal DNAs of them were extracted and subjected to PCR analyses with 3 random primers. Each PCR produced approximately 30 distinct PCR bands with the size from 200 bp to 3000 bp. A dendrogram was acquired using the unweighted pair-group method with arithmetic average (UPGMA) clustering methodology on the basis of the DNA band pattern. The analysis revealed that 30 strains of H. marmoreus were clustered into two distinct clusters. Cluster 1 contained 3 subgroups while the cluster 2 consisted of rather diverse strains. Interestingly, Hm3-10, a wild strain collected from Deog-Yu mountain, was not included in either clusters, indicative of uniqueness of this strain. We nextly attempted to develop strain-specific DNA markers to verify a specific strain. A unique band in the RAPD gel lane of Hm0-4 was extracted and its sequence was determined. PCR with a primer set from the determined sequence revealed that the primer set gave a 250 bp DNA band only for Hm0-4, indicating that this approach works well for the strain-specific identification of H. marmoreus.

느티만가닥버섯의 품종구분을 위하여 국내 버섯보존기관으로부터 수집한 30종의 품종에 대한 RAPD 분석을 실시하였다. 이를 위하여 고체배지상의 균사로부터 염색체 DNA를 분리하였고 이를 주형으로 하여 3개의 random primer로 PCR 반응을 수행하였다. 그 결과 각 PCR 반응에서 200 bp에서 3000 bp 범위의 크기를 가진 DNA 밴드 약 30종이 관찰되었다. DNA 밴드 패턴은 UPGMA 방법으로 분석하여 그 결과를 dentrogram으로 나타내었다. 느티만가닥버섯은 2개의 클러스터로 분석되었으며, 클러스터 1은 다시 3개의 작은 그룹으로 나눌 수 있었다. 반면, 클러스터 2의 경우에는 유전적으로 클러스터 1보다 다양한 품종으로 구성되어 있었다. 흥미롭게도 덕유산에서 채집된 야생종 Hm3-10의 경우 어느 클러스터에도 속하지 않는 고유의 품종임을 확인하였다. RAPD 결과 나타나는 품종별 고유의 DNA 밴드를 품종특이적 마커로 개발하기 위하여, Hm0-4 품종의 250 bp 특이밴드를 TA-클로닝하고 염기서열을 결정하였다. 결정된 염기서열을 바탕으로 PCR primer를 디자인하였고 이를 이용하여 PCR 반응을 수행하였다. 그 결과 250 bp DNA 밴드는 Hm0-4 품종에서만 관찰되었으며 이는 이러한 접근법이 품종특이적 마커개발에 잘 적용됨을 보여주는 것이다.

Keywords

References

  1. Alam, N., Shim, M. J., Lee, M. W., Shin, P. G., Yoo, Y. B. and Lee, T. S. 2009a. Phylogenetic relationship in different commercial strains of Pleurotus nebrodensis based on ITS sequence and RAPD. Mycobiol. 37:183-188. https://doi.org/10.4489/MYCO.2009.37.3.183
  2. Alam, N., Shim, M. J., Lee, M. W., Shin, P. G., Yoo, Y. B. and Lee, T. S. 2009b. Vegetative growth and phylogenetic relationship of commercially cultivated strains of Pleurotus eryngii based on ITS sequence and RAPD. Mycobiol. 37:258-266. https://doi.org/10.4489/MYCO.2009.37.4.258
  3. Chang, J. S., Son, J. K., Gao, L. and Oh, E. J. 2004. Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol A9, isolated from Hypsizigus marmoreus. Cancer Lett. 212:7-14. https://doi.org/10.1016/j.canlet.2004.03.013
  4. Chen, Y. C., Eisner, J. D., Kattar, M. M., Rassoulian-Barrett, S. L., Lafe, K., Bui, U., Limaye, A. P. and Cookson, B. T. 2001. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J. Clin. Microbiol. 39:4042-4051. https://doi.org/10.1128/JCM.39.11.4042-4051.2001
  5. Grimberg, J., Maguire, S. and Belluscio, L. 1989. A simple method for the preparation of plasmid and chromosomal E. coli DNA. Nucleic Acids Res. 17:8893-8893. https://doi.org/10.1093/nar/17.21.8893
  6. Gonzalez, P. and Labarere, J. 2000. Phylogenetic relationships of Pleurotusspecies according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6, and V9 domains. Microbiol. 146:209-221. https://doi.org/10.1099/00221287-146-1-209
  7. Ikekawa, T., Saitoh, H., Feng, W., Zhang, H., Li, L. and Matsuzawa, T. 1992. Antitumor activity of Hypsizigus marmoreus. I. Antitumoractivity of extracts and polysaccharides. Chem. Pharm. Bull. 40:1954-1957. https://doi.org/10.1248/cpb.40.1954
  8. Kim, H. S., Ha, H. C. and Kim, T. S. 2003. Research and prospects in new functional mushroom - Tremella fuciformis, Grifora frondosa and Hypsizigus marmoreus. Kor. J. Food Sci. Ind. 36:42-46.
  9. Lam, S. K. and Ng, T. B. 2001. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem. Biophys. Res. Comm. 285:1071-1075. https://doi.org/10.1006/bbrc.2001.5279
  10. Lopandic, K., Molnar, O. and Prillinger, H. 2005. Application of ITS sequence analysis, RAPD and AFLP fingerprinting in characterising the yeast genus Fellomyces. Microbiol. Res. 160:13-26. https://doi.org/10.1016/j.micres.2004.09.005
  11. Matsuzawa, T., Sano, M., Tomita, I., Saitoh, H., Ohkawa, M. and Ikekawa, T. 1998. Studies on antioxidants of Hypsizigus marmoreus. II. Effects of Hypsizigus marmoreus for antioxidants activities of tumor-bearing mice. Yakugaku Zasshi 118:476-481. https://doi.org/10.1248/yakushi1947.118.10_476
  12. Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12:357-358.
  13. Park, H. G., Ko, H. G., Kim, S. H. and Park, W. O. 2004. Molecular identification of asian isolates of medicinal mushroom Hericium erinaceum by phylogenetic analysis of nuclear ITS rDNA. J. Microbiol. Biotechnol. 14:816-821.
  14. Pavlicek, A., Hrda, S. and Flegr, J. 1999. FreeTree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biologica 45:97-99.
  15. Ro, H. S., Kim, S. S., Yu, J. S., Jeon, C. O., Lee, T. S., Yoo, J., Lee, C. W., Kim, J. W. and Lee, H. S. 2007. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting and physiological characteristics. Mycol. Res. 111:710-715. https://doi.org/10.1016/j.mycres.2007.03.016
  16. Rohlf, F. J. 1989. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Version 1.50. Exeter Publication, New York, USA.
  17. Tsuchida, K., Aoyagi, Y. Odani, S., Mita, T. and Isemura, M. 1995. Isolation of a novel collagen-binding protein from the mushroom, Hypsizigus marmoreus, which inhibits the Lewis lung carcinoma cell adhesion to type IV collagen. J. Biol. Chem. 270:1481-1484. https://doi.org/10.1074/jbc.270.4.1481
  18. Tuchwell, D. S., Nicholson, M. J., McSweeney, C. S., Theodorou, M. K. and Brookman, J. L. 2005. The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiol. 151:1557-1567. https://doi.org/10.1099/mic.0.27689-0
  19. Wang, L., Hu, X., Feng, Z. and Pan, Y. 2009. Development of AFLP markers and phylogenetic analysis in Hypsizygus marmoreus. J. Gen. Appl. Microbiol. 55:9-17. https://doi.org/10.2323/jgam.55.9
  20. Zervakis, G. I., Venturella, G. and Papadopoulou, K. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiol. 147:3183-3194. https://doi.org/10.1099/00221287-147-11-3183
  21. Zhang, J., Huang, C. Y., Ng, T. B. and Wang, H. X. 2006. Genetic polymorphism of ferulae mushroom growing on Ferula sinkiangensis. Appl. Microbiol. Biotechnol. 71:304-309. https://doi.org/10.1007/s00253-005-0139-y

Cited by

  1. Genetic Variation in Mutants Induced by Gamma Ray in Hypsizigus marmoreus vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1174
  2. Comparative Molecular Phylogenetic Relationships in Different Strains of Pleurotus spp. vol.38, pp.2, 2010, https://doi.org/10.4489/KJM.2010.38.2.112
  3. Mutagenesis of of Hypsizygus marmoreus by Gamma Ray Irradiation vol.39, pp.3, 2011, https://doi.org/10.4489/KJM.2010.39.3.231
  4. Genetic Diversity Analysis ofHypsizygus marmoreuswith Target Region Amplification Polymorphism vol.2014, 2014, https://doi.org/10.1155/2014/619746
  5. Genetic Variation Based on Random Amplified Polymorphic DNA (RAPD) and Internal Transcribed Spacer (ITS) Region Sequences in Lepista nuda vol.22, pp.11, 2012, https://doi.org/10.5352/JLS.2012.22.11.1470
  6. Breeding of New Strains of Mushroom by Basidiospore Chemical Mutagenesis vol.39, pp.4, 2011, https://doi.org/10.5941/MYCO.2011.39.4.272
  7. Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1708
  8. Phylogenetic relationships in different strains of Pholiota species based on PCR polymorphism vol.11, pp.2, 2013, https://doi.org/10.14480/JM.2013.11.2.069
  9. Genetic variation of local varieties and mutants groups induced by gamma ray in Hypsizigus marmoreus vol.12, pp.3, 2014, https://doi.org/10.14480/JM.2014.12.3.181
  10. Genetic Diversity and Phylogenetic Relationship in Korean Strains of Lentinus lepideus Based on PCR Polymorphism vol.38, pp.2, 2010, https://doi.org/10.4489/KJM.2010.38.2.105