
P2P (Peer-to-Peer) 비디오 스트리밍을 위한 다중 비디오 품질 인센티브 기법 189

P2P (Peer-to-Peer) 비디오 스트리밍을 위한

다중 비디오 품질 인센티브 기법

부디오노 위보우†․권 진 백†

요 약

인터넷 상에서의 비디오 스트리밍을 위한 대안으로서 P2P(Peer-to-Peer)가 관심을 받고 있다. P2P 시스템은 피어들의 대역폭 기여에 의존

하고 있지만, 피어들은 자신의 대역폭을 제공하는 것을 꺼리는 경향이 있다. 본 논문에서 우리는 상향 대역폭 기여를 촉진하는 P2P 스트리밍

시스템을 제안한다. 제안 시스템에서 피어들 간의 공평성을 유지하고, 제어 가능한 방법으로 협력적인 피어와 이기적인 피어에게 다른 품질의

비디오를 제공한다. 제안 시스템은 기여한 상향 대역폭에 기초한 평가 기법으로 피어가 협력적인지 이기적인지를 결정하고, 협력적인 피어들에

게는 인센티브로서 고품질의 비디오를 제공한다. 또한 제안시스템이 효과적으로 동작할 수 있도록 트리 재건조 알고리즘을 제안한다. 시뮬레이

션을 통해, 트리 재건조 알고리즘이 효과적으로 동작하며, 인센티브 기법이 협력적인 피어에게 더 많은 하향 대역폭을 할당하고 이기적인 피어

에게는 저품질 비디오를 제공함을 보인다.

키워드 : 비디오 스트리밍, 피어-투-피어, 인센티브 기법

Layered Video Quality Incentive Mechanism for

Peer-to-Peer Video Streaming

Budiono Wibowo
†
․Jin Baek Kwon

†

ABSTRACT

Peer-to-Peer (P2P) has attracted attention as an alternative way to enable streaming videos on the Internet. Although P2P systems

depend on bandwidth contribution from peers, peers are likely to refuse to contribute their bandwidth. In this paper, we proposed a P2P

streaming system that encourages peers to contribute their upstream bandwidth by maintaining fairness among peers and providing

different video quality between cooperative peers and selfish peers with a manageable way. Our proposed system determines if peers are

cooperative or selfish by a rating mechanism based on their contributed upstream

bandwidth, and offers a high quality video to cooperative peers as an incentive. Also we propose a tree reconstruction algorithm to

make the system work effectively. Through simulation, we show that the tree reconstruction algorithm works effectively, and our incentive

mechanism allocates more downstream bandwidth to cooperative peers and punished selfish peers with low quality video.

Keywords : Video Streaming, Peer-to-Peer, Incentive Mechanism

1. Introduction1)

Video streaming over Internet has drawn a lot of interest

from researchers in recent decade. Peer-to-Peer(P2P) has

※ “This research was supported by the MKE(The Ministry of Knowledge
Economy), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the NIPA(National IT Industry
Promotion Agency)” (NIPA-2010-C1090-1031-0004)

†정 회 원 :선문대학교 컴퓨터공학과
논문접수: 2009년 12월 10일
수 정 일 : 1차 2010년 3월 2일, 2차 2010년 3월 30일
심사완료: 2010년 3월 30일

become an alternative way to enable broadcasting video on

the Internet [1, 2]. P2P system works on premise that every

peer contributes their upstream bandwidth and transmits

video data to others. If a significant fraction of peers refuse

to contribute, then P2P system would not work [3]. Currently,

there are already some P2P video streaming services such as

PPLive [4], PPStream [5], and UUsee [6].

There are some opportunities and challenges in building

P2P video streaming system [7]. Challenges include choosing

a P2P architecture, tree-based or data-driven architecture,

handling free rider phenomenon, maintaining fairness among

DOI: 10.3745/KIPSTB.2010.17B.3.189

190 정보처리학회논문지 B 제17-B권 제3호(2010.6)

peers, facing heterogeneity in peers bandwidth, and so on.

Some challenges are still open problems that researches have

attacked. Many P2P video streaming systems are built under

impractical assumptions, such as homogeneous peer

bandwidth and cooperative peers. In other words, every peer

is assumed to have an equal and high bandwidth and to be

cooperative in contribution of high upload bandwidth ranging

from 200 Kbps to 2Mbps [2, 8]. These assumptions are not

applicable in the real environment, where a number of peers

are highly probable not to be cooperative. Even though peers

are willing to contribute their bandwidth, the upstream

bandwidth might be very limited if they are on ADSL or

PSTN.

Some work has proposed incentive mechanisms to

encourage peers to contribute their upstream bandwidth for

handling free rider phenomenon. A well-known example in

P2P file sharing is tit-for-tat mechanism that is used by

BitTorrent [9-11], which was modified to apply to video

streaming [12]. In [12], a peer's incentive is measured

according to how much useful bandwidth it contributes back

to the P2P system, and then determines its download rate.

Wallach and Druschel applied the incentive mechanism on

video streaming by frequently rebuild multicast tree to refuse

to serve selfish peers [13]. It also introduced a debt

mechanism which works as follow: when node A forwards

a streaming data packet to node B, both nodes keep track

that B owes A one packet. If the debt exceeds some

threshold, A might refuse to send further data to B. In a

payment-based incentive mechanism, peers earn points by

forwarding data to others and then use these points to

compete with each other for good parents, i.e., data suppliers

[14]. It also introduces a bidding strategies which is designed

to maximize peer own utility. A mechanism is provided for

off-session peers to continue to make contributions by

rewarding those points for future services.

In the previous work, since P2P systems limit peers'

download rate based on their contribution, peers with small

contribution are likely to suffer from frequent jitters on

screen and longer buffering time. This penalty to selfish

peers is too rough not to enable to predict the effect on the

quality of service (QoS) experienced by the peers. The QoS

degradation may be too severe when the download rate goes

down below the video bitrate. Therefore, it is desirable to

manage the QoS such as to provide different QoS for each

client based on how much it cooperates for the P2P network.

The problem can be solved by managing a video quality.

In other words, cooperative peers can play high quality video,

and selfish peers can play low quality video. In this paper,

we propose a P2P streaming system that encourages peers

to contribute their upstream bandwidth by maintaining

fairness among peers and providing different video quality

between cooperative peers and selfish peers with a

manageable way. Our proposed system determines if peers

are cooperative or selfish by a rating mechanism based on

their contributed upstream bandwidth, and offers a high

quality video to cooperative peers as an incentive. Also we

propose a tree reconstruction algorithm to make the system

work effectively. The quality incentive is achieved by using

multi-layer coding [15], which provides two levels of video

quality with single stream. We adopt a mesh-based

architecture [16] as our base P2P architecture, where sibling

peers in tree exchange data segments. And, the effectiveness

of the proposed system is demonstrated through simulation.

2. Related Work

For a P2P network to be operated actively and effectively,

peers' contribution is necessary. However, a peer naturally

tends toward selfishness on contributing its resource such as

network bandwidth and CPU time. Some incentive

mechanisms have been proposed to encourage peers to

contribute their upstream bandwidth for handling the free

rider phenomenon. A well-known incentive mechanism in

P2P file sharing is tit-for-tat that is used by BitTorrent

[9-11]. A file is divided into multiple segments, which are

distributed at random. The peers requesting the file receive

different segments, and then exchange their segments with

other peers to get a complete file. Hence, a peer who provides

much upload bandwidth to others would get much segments,

that is, it is provided with much download bandwidth.

The tit-for-tat mechanism was modified to be applied to

video streaming over P2P network [12, 17]. In the work, a

peer's incentive is measured based on how much useful

bandwidth it contributes back to the P2P system, and then

the incentive determines how much download bitrate is

provided to the peer. Unlike a file sharing, video streams

have a timeliness property, where each data block has its

deadline for playing back, because late blocks become

obsolete. The useful bandwidth means the actual bandwidth

that delivers blocks on time, not late blocks. Because

continuous playback should be guaranteed in video

streaming, tit-for-tat mechanism is applied into each chunk

consisting of several segments, round by round, instead of

a whole file.

Wallach and Druschel proposed an incentive mechanism

for video streaming, which periodically rebuilds multicast

tree to refuse to serve selfish peers [13]. If multicast trees

are constructed randomly, a peer may be stuck if it is located

P2P (Peer-to-Peer) 비디오 스트리밍을 위한 다중 비디오 품질 인센티브 기법 191

on downstream from a selfish peer that is refusing to forward

data to its children. By periodically reconstructing the

multicast tree, a peer will only ever benefit or suffer from

such situations for at most a fixed time period. The

mechanism also introduces a debt maintenance that works as

follows: when peer A forwards a stream data packet to a peer

B, both peers can track that B owes A one packet. If the debt

exceeds some threshold, A might refuse to send further data

to B.

Tan and Jarvis proposed a payment-based incentive

mechanism, where peers earn points by forwarding data to

others and then use these points to compete with each other

for good parents, i.e., data suppliers [14]. It also introduces

a bidding strategy designed to maximize peer own utility, and

provides a scheme for off-session peers to continue making

contributions by rewarding points for future services.

Habib and Chuang introduced a rank-based peer-selection

mechanism for a P2P media streaming system [18]. A peer’s

contribution is represented by a score, which is then mapped

to the rank of this user among all users in the system. A peer

with higher score has more flexibility in peer selection, while

a free rider has limited flexibility in peer selection. The peers

with higher score are expected to have better data supplier

or parent.

Liu et al. proposed an incentive mechanism similar to our

work, which suggested using layered video for incentives in

P2P live streaming[19]. Although the objective and the

approach are the same as our work, it is based on

unstructured mesh architecture, where it is hard to control

the exchange of the layers from a source. In the other hand,

our work is divised on structured mesh architecture based on

tree architecture, which is suitable to apply layered video as

incentives.

3. Background

3.1 Multi-layer Video Coding

Domanski and Mackowiak devised a multi-layer video

coder producing multi-layer frames for two levels of

resolution for heterogeneous communication networks [15].

The coder is based on spatial-temporal scalability and data

partitioning. Its goal is to achieve the aggregated bitrates of

all layers encoded by the multi-layer coder possibly close to

the bitrates of a video encoded with a single layer. The

bitrate overhead measured relative to the single layer

MPEG-2 bitstream varies about 10% - 25% for progressive

television test sequences.

The coder consists of a low-resolution coder and high

resolution coder. The bistreams produced by these two

coders are split into some further layers by use of data

partitioning. The low-resolution coder processes video

sequences with reduced both spatial and temporal

resolutions. Temporal resolution reduction is achieved by

partitioning of the stream of B-frames: each second frame

is not processed by the low-resolution coder. Therefore there

exist two types of B-frames: BE-frames processed by the

high-resolution coder only and BR-frames that are processed

by both coders like I- and P-frames. An exemplary but

typical group of picture (GOP) structure for a full-layer

stream is as follows:

I-BE-BR-BE-P-BE-BR-BE-P-BE-BR-BE-P-BE-BR-BE.

Also a GOP structure for a base-layer stream is as

follows:

I-BR-P-BR-P-BR-P-BR.

3.2 Mesh-based Architecture

Mesh-based architecture was recently proposed as one of

P2P streaming architecture [16]. It is the same as tree

architecture except for that data can be delivered among the

peers in the same level, not only from parents to children.

In this architecture, participating peers form a mesh-based

overlay and integrate a swarm-like content delivery. This

approach is motivated by file-swarming mechanisms as in

BitTorrent. File-swarming mechanisms distribute video

segment among different peers which enables most peers to

actively utilize their outgoing bandwidth.

In the mesh-based architecture, data segments of a video

are distributed from a source in two phases: diffusion and

swarm. In a diffusion phase, each video segment is delivered

to a different subset of child peers periodically. Then, in a

swarm phase, the mutually connected peers in the same level

exchange or swarm their video segments until each peer has

all video segments that the peers in the same level have.

After that, each peer can start to play video. The time for

one diffusion phase and swarm phase is considered as buffer

time.

(Fig. 1) shows an example of mesh-based architecture

with a source and nine peers. In the example, Peer 1, 2, and

3 are in the first level of the tree. The others are in the second

level. The source has a complete video divided into segments:

A, B, C, and so on. The segments are distributed through

diffusion and swarm phases. The solid arrows indicate

diffusion. The source diffuses segments to the peers in the

first level. Each child peer receives a different segment: Peer

1 gets A, Peer 2 gets B and Peer 3 gets C. Then, in a swarm

phase indicated as the dashed arrows indicate swarm, they

exchange segment one another to obtain all the segments in

the first level. Hence, Peer 1, 2, and 3 have all segments, i.e.,

192 정보처리학회논문지 B 제17-B권 제3호(2010.6)

(Fig. 1) Mesh-based architecture (some arrows and segments

are omitted for clearance)

(Fig. 2) Bandwidth allocation and quality incentives

A, B, and C, and they can start to play the video. Hereby,

the diffusion and swarm phases for the first level are over.

After the completion of the two phases in the first level,

the peers in the level are ready to deliver their segments to

the peers in the second level. As shown in the figure, Peer

1 diffuses segments to Peer 4 and 5. At the same time, Peer

1 also gets a new segment from the source, e.g., segment D.

This process is repeated in each level of the mesh until all

video segments are delivered to all peers.

4. Proposed System

In this section, we present a P2P streaming system that

encourages peers to contribute their upstream bandwidth by

maintaining fairness among peers and providing different

video quality between cooperative peers and selfish peers

with a manageable way. This section is organized with two

parts: (i) a video quality incentive offering high quality video

to cooperative peers, and (ii) a tree reconstruction mechanism

making the system work effectively.

4.1 Incentive Mechanism

An incentive mechanism gives a reward to cooperative

peers and a penalty to selfish peers, to encourage peers to

contribute their upload bandwidth for P2P system. Therefore,

each peer in Q-stream quantifies neighbor peers'

cooperativeness based on their contributed upload bandwidth,

and thereby allocates its upload bandwidth to them.

Specifically, each peer i keeps track of the download

bandwidth, Dij, provided by each neighbor peer j in the past

swarm phases. Let Dij
new be the download bandwidth from

peer j to peer i in the last swarm phase and Ni be a set

of neighbor peers that connected to peer i. Dij is calculated

by:

Dij = (Dij + Dij
new) / 2 .

Then peer i calculates the upload bandwidth, Uij allocated

to each peer j in Ni as follows:

Uij = (Dij / Di) × Ui , (1)

where Di = ∑j∈Ni Dij and Ui is the total upload bandwidth

contributed by peer i. That is, Uij is determined in proportion

of the contribution of peer j to total download bandwidth

provided to peer i. It is computed at the end of swarm phases,

and allocated as the upload bandwidth for peer j for the

next swarm phase. If Dij relies only on the last swarm phase,

it would be so sensitive, and if they rely on too many past

swarm phases, it would be so insensitive. Hence, Dij is

determined such that the more recent information is reflected

more in the calculation, that is, the effect of information in

a swarm phase on the calculation decreases exponentially as

time goes by.

(Fig. 2) shows an example, where peer 1 has a 128-Kbps

upload bandwidth, and it has three neighbors, peer 2, 3, and

4. That is, Ui = 128 and Ni = {2,3,4}. In the last swarm phase,

peer 1 took 60 Kbps, 40 Kbps, and 20 kbps from peer 2, 3,

and 4, respectively. Assuming that the streaming begins from

the last swarm, D1,2=60, D1,3=40, D1,4=20, and D1=120

(=60+40+20). Then, peer 1 computes the upload bandwidth

allocated to each for according to Eq.(1): U1,2 = 64

(=(60/120)·128), U1,3 = 43 (=(40/120)·128), and U1,4 = 21

(=(20/120)·128). That is, peer 1 allocates a bandwidth of 64

Kbps to peer 2, that of 43 Kbps to peer 3, and that of 21 Kbps

to peer 4 for the next swarm phase.

The existing work does not take into account the video

quality that the peers punished by the incentive mechanism

would actually experience, but controls simply download

bandwidth allocated to peers based on their cooperativeness.

That approach is not suitable for video streaming application

P2P (Peer-to-Peer) 비디오 스트리밍을 위한 다중 비디오 품질 인센티브 기법 193

(a) Before

(b) After

(Fig. 3) Peer promotion (the shaded circles indicate selfish

peers)

that should manage the quality, because unmanaged quality

degradation to selfish peers makes them leave the P2P

network. Also, we cannot assume that multi-layered streams

have been works in P2P without any consideration, because

peers getting a low-quality stream cannot provide

high-quality stream if they have enough upstream

bandwidth. Hence, we have to devise an approach that have

the selfish peers stay and become cooperative, instead of

driving them out. The proposed system encourages peers to

contribute their upstream bandwidth by maintaining fairness

among peers and providing different video quality between

cooperative peers and selfish peers with a manageable way.

In our scheme, cooperative peers are received a good

quality video as an incentive. Meanwhile, selfish peers

experience quality degradation as a penalty. Peer i decides

if it sends full segments to each neighbor or base segments

by comparing Uij with a threshold αi that is determined as

a bit rate of full quality video divided by the number of

neighbor peers. If Uij ≥ αi, peer j would receive full quality

video data, otherwise it would receive degraded quality video

data. In the example of (Fig. 2), assuming the full bit rate

is 128 Kbps, α1 =43 (=128/3) Kbps. Thus, peer 1 transfers full

segments to peer 2 and 3 because both U1,2 and U1,3 are

greater than or equal to α1, and base segments to peer 4

because U1,4 is less than α1 as illustrated in the figure. A'

indicates the base segment of A.

4.2 Tree Reconstruction

In this subsection, we address a tree reconstruction to

make our incentive mechanism work more effectively. Tree

is reconstructed regularly every end of swarm phase and also

irregularly when a peer leaves the tree. At the beginning of

video streaming, the tree structure is created in the order of

arrival because there is no information about how much

bandwidth is contributed by each peer. Thus, peers who join

the stream first would get good positions near the source. In

(Fig. 3(a)), selfish peers dominate the upper levels of tree and

cooperative peers are located in the lower levels. The

diffusion phase might be failed since the selfish peers are

likely not to provide enough upload bandwidth to their child

peers. Even if the diffusion is successful, it is highly probable

that the selfish peers have only base segments and

accordingly their descendants get only base segments

regardless of the cooperativeness. With this kind of tree

structure, our incentive mechanism would not work. That is

why we devised a mechanism promoting cooperative peers

up to the top so as to reconstruct this bad structure to a good

one like (Fig. 3(b)), in order to minimize the ripple effect from

the selfishness.

The promotion mechanism moves cooperative peers up

and selfish peers down by replacing the selfish parents with

the cooperative children. It is applied for each level from the

highest level to the lowest level of the tree. The promotion

method is initiated by the source, and each peer keeps its

actually contributed upload bandwidth reported by its

neighbors at the end of each swarm phase. If peer i contribute

such small bandwidth that it can send only base segments

to its children, the source finds a peer who contribute higher

upload bandwidth among the children of peer i. Then, the

source activates the promotion method involving peer i, the

parent of peer i, and the elected peer from the children of peer

i. Let peer pi be the parent of peer i and peer ci be the elected

child. The promotion method replaces peer i with peer ci by

changing information in peer i, peer pi, peer ci, and other

neighbors of peer i and ci. To swap peer i and ci, peer pi

replaces peer i with peer ci in its children set and peer ci

replaces its children with those of peer i and announces its

joining to the neighbors of peer i. And then peer ci registers

peer i as its child and peer i replaces its children with the

children of peer ci and announces its join to the past

neighbors of peer ci. This procedure should be atomic for

continuous streaming.

194 정보처리학회논문지 B 제17-B권 제3호(2010.6)

(Fig. 4) Peer promotion (the shaded circles indicate selfish

p[eers)

(Fig. 5) Average Video Quality

5. Performance Evaluation

5.1 Simulation Setup

We demonstrate our incentive mechanism and tree

reconstruction mechanism by simulation. We implemented

the simulator program in Java. In the simulation, a video

bitrate is set to 128 Kbps, and the total number of peers is

2,000. <Table 1> shows the upload bandwidth distribution of

the peers. And, a peer has nine neighbors for swarm phases.

The performance metrics in our simulation are the following:

- Distance(i): level of peer i on the tree.

- Quality(i): ratio of the number of full segments to total

number of segments received by peer i.

- DB(i): download bandwidth provided to peer i.

- Fairness(i): (upload bandwidth contributed by peer i) /

(download bandwidth provided to peer i).

The ultimate objective of an incentive mechanism is to

maximize the capacity of a P2P system by encouraging peers

to contribute their bandwidth. Unfortunately, it is impossible

to anticipate how each peer reacts on the incentive

mechanism. Hence, we cannot measure the performance

metric and each incentive mechanism has its own philosophy

and characteristics. That is why there is no comparison with

existing mechanisms in our experiments.

BW

(Kbps)
16 32 64 96 128 160 192 224 256

of

peers
140 160 200 300 400 300 200 160 140

<Table 1> Upload bandwidth distribution

5.2 Experimental Results

The tree reconstruction is needed to fix a bad structure,

where selfish peers are placed in higher levels so that peers

in lower levels cannot be reliably served with a full quality.

Thus, we suggested a promotion mechanism in Section 4.2.

(Fig. 4) shows average distance from the root, for each peer

class of upload bandwidth. In the initial tree, the peers of 16

and 32 Kbps are placed near to the root and the cooperative

peers of 128 and 160 Kbps are placed relatively far. That is

the initial tree is not efficient for video streaming and not

effective for applying our incentive mechanism. After

applying the promotion mechanism, we can see that the

distance of more cooperative peers is shorter. In other words,

the peers who contribute more upload bandwidth are placed

nearer to the source as the result of our promotion

mechanism.

In our proposed system, full quality video is provided to

cooperative peers, and base quality video is provided to

selfish peers. To demonstrate the effectiveness of our

incentive mechanism, we measured the proportion of full

segments to total segments received by each peer, which is

defined as video quality in our experiments. (Fig. 5) shows

the average video quality for each peer class of upload

bandwidth, at the end of the 5th, 10th, 20th, and 30th swarm

phases. Though the video quality values in the initial states

are not consistent, they converge to an expected result as

time goes by – the peers contributing more upload

bandwidth get high video quality. In the figure, the most

selfish peers with 16 and 32 Kbps got the video quality of

lower than 0.6, but the most cooperative peers with 224 and

256 Kbps got that of higher than 0.8.

The objective of an incentive mechanism is to provide

more download bandwidth to cooperative peers and less

bandwidth to selfish peers. Thus, we measured the download

bandwidth that each peer actually received. (Figure 6) shows

the average download bandwidth for each peer class of

upload bandwidth. Without our incentive mechanism, average

P2P (Peer-to-Peer) 비디오 스트리밍을 위한 다중 비디오 품질 인센티브 기법 195

(Fig. 6) Average Download Bandwidth

bandwidths actually received to all peer classes are almost

even. With our incentive mechanism, however, the bandwidth

increases linearly as upload bandwidth goes high.

It is reasonable to provide download bandwidth to each

peer as much as it contributes its upload bandwidth to P2P

network. Thus, we define a fairness of a peer as a proportion

of upload bandwidth actually contributed to download

bandwidth actually received by the peer. That fairness is

greater than one means that the peer gives more bandwidth

than it obtains (Fig. 7) shows the average fairness for each

peer class of upload bandwidth. Without our incentive

mechanism, the P2P system is so unfair because all peers

receive similar download bandwidth regardless of their

bandwidth contribution. That is why the fairness values

increase as upload bandwidth goes high in the figure. With

our mechanism, the values are distributed close to one. That

is, each peer tends to receive bandwidth as much as it

contributes.

(Fig.7) Average Fairness

6. Conclusion and Future Work

In this paper, we proposed a P2P streaming system that

encourages peers to contribute their upstream bandwidth by

maintaining fairness among peers and providing different

video quality between cooperative peers and selfish peers

with a manageable way. Our proposed system determines if

peers are cooperative or selfish by a rating mechanism based

on their contributed upstream bandwidth, and offers a high

quality video to cooperative peers as an incentive. Also we

propose a tree reconstruction algorithm to make the system

work effectively. Through simulation, we showed that the

tree reconstruction algorithm worked effectively, and our

incentive mechanism allocated more download bandwidth to

cooperative peers and punished selfish peers with low quality

video.

As a future work, we are planning to extend this work by

giving streaming reliability as an incentive. In P2P streaming,

a disconnection is a frequent and serious problem due to peer

leaving.

References

[1] J. Crowcroft and I. Pratt, “Peer-to-Peer: Peering into the

Future,” In IFIP-TC6 Networks , 2002.

[2] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K.

Sripanidkulchai, “Distributing Streaming Media Content

Using Cooperative Networking,” In Proc. of ACM

NOSSDAV, 2002.

[3] P. Colle, K. Leyton-Brown, and I. Mironov, “Incentives for

Sharing in Peer-to-PeerNetworks,” In Proc. of ACM

Conference on Elcetronic Commerce, 2001.

[4] PPLive, http://www.pplive.com.

[5] PPStream, http://www.ppstream.com.

[6] UUsee, http://www.uusee.com.

[7] Jiangchuan Liu, Sanjay G. Rao, Bo Li, and Hui Zhang,

“Opportunities and Challenges of Peer-to-Peer Internet

Video Broadcast,” In Proc. of the IEEE, Special Issue on

Recent Advances in Distributed Multimedia Communications

2007.

[8] D. Tran, K. Hua, and S. Sheu, “Zigzag: An Efficient

Peer-To-Peer Scheme for Media Streaming,” In Proc. of

IEEE INFOCOM, 2003.

[9] A. Legout, N. Liogkas, E. Kohler and L. Zhang, “Clustering

and Sharing Incentives in Bit-Torrent Systems,” In Proc. of

ACM SIGMETRICS’2007, San Diego, CA, USA, June 2007.

196 정보처리학회논문지 B 제17-B권 제3호(2010.6)

[10] S. Jun and M. Ahamad, “Incentives in BitTorrent Induce Free

Riding,” In Proceedings of ACM SIGCOMM Workshop on

Economics of Peer-to-Peer Systems, 2005.

[11] Minglu Li, Jiadi Yu and Jie Wu. “Free-Riding on

BitTorrent-Like Peer-to-Peer File Sharing Systems:

Modeling Analysis and Improvement,” In Proceedings of

IEEE Transactions on Parallel and Distributed Systems 2008.

[12] S. Agarwal, “Achievability of an Incentive Mechanism for

Gossip-based Peer-to-Peer Streaming. In Workshop on

Recent advances in Peer-to-Peer Streaming,” In Proc. of Int’l

Conference on Quality of Service in Heterogeneous

Wired/Wireless Networks, Waterloo, Ontario, Canada,

August 2006.

[13] Dan S. Wallach and Peter Druschel, “Incentives-Compatible

Peer-to-Peer Multicast,” In Proc. of Workshop on the

Economics of Peer-to-Peer Systems, Cambridge, Massachu-

setts, June 2004.

[14] G. Tan and SA Jarvis, “A Payment-based Incentive and

Service Differentiation Scheme for Peer-to-Peer Streaming

Broadcast,” IEEE Transactions on Parallel and Distributed

Systems, 19(4), April 2008.

[15] M. Domanski and S. Mackowiak, “Modified MPEG-2 Video

Coders with Efficient Multi-Layer Scalability,” In Prof. of

IEEE Int’l Conference on Image Processing, Thessaloniki,

Greece, October 2001.

[16] N. Magharei and R. Rejaie, “Understanding Mesh-based

Peer-to-Peer Streaming,” In Proc. of Int’l Workshop on

Network and Operating Systems Support for Digital Audio

and Video, Newport, Rhode Island, May 2006.

[17] S. Agarwal and S. Dube, “Gossip-based Streaming with

Incentives for Peer Collaboration,” In Proc. of IEEE Int’l

Symposium on Multimedia, San Diego, CA, USA, December

2006.

[18] A. Habib and J. Chuang, "Service Differentiated Peer

Selection: An Incentive Mechanism for Peer-to-Peer Media

Streaming," IEEE Transactions on Multimedia, 8(3), 2006.

[19] Zhengye Liu, Yanming Shen, Shivendra S. Panwar, Keith W.

Ross, and Yao Wang, “Using Layered Video to Provide

Incentives in P2P Live Streaming,” P2P-TV’07, Kyoto,

Japan, August 2007.

부디오노 위보우

e-mail : budionow@gmail.com

2004 B.S. in computer science, University

of Indonesia

2008 M.S. in computer science, Sun

Moon University

Research Interests : peer-to-peer networks, embedded systems,

etc.

권 진 백

e-mail : jbkwon@sunmoon.ac.kr

1998 B.S. in statistics, Hankuk Univer-

sity of Foreign Studies

2000 M.S. in computer science, Seoul

National University

2003 Ph.D. in computer science and

engineering, Seoul National

University

2003～2005 a full-time lecturer in Sun Moon University

2005～2009 an assistant professor in Sun Moon University

2009～Now an associate professor in Sun Moon University

Research Interests : distributed systems, multimedia systems,

operating systems, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

