Abstract
This paper is a foundation work in developing a software for generating infrared images from a scene with various objects. The spectral radiance received by a remote sensor is consisted of the self-emitted, reflected and scattered components. In general, the self-emitted component is the most important part for generating Infrared signatures from the object. In this paper, the infrared image generation considering various surface temperature and optical surface property of a flat plate is demonstrated in MWIR($3{\sim}5{\mu}m$) and LWIR($8{\sim}12{\mu}m$) regions for different spatial resolutions of the images. Resulting spectral radiance values in the MWIR($3{\sim}5{\mu}m$) and LWIR($8{\sim}12{\mu}m$) regions arrived at the infrared sensor are compared numerically and graphically by recognizing that they are strongly dependent on the surface conditions such as the surface temperature and the surface emissivity. And these infrared images are also shown to be strongly dependent on the resolutions of the infrared imaging devices as well. This study reveals that the surface conditions are more dependent on the radiance level from the surface while the resolution of the imaging device is more responsible for identifying the shape of object.