DOI QR코드

DOI QR Code

Studies on the Physiological Characteristics of (Cervus e. canadensis) Velvet Antler in Elk

  • Jeon, Byong-Tae (Korea Nokyong Research Center, Konkuk University) ;
  • Thomas, David G. (Institute of Food, Nutrition and Human Health, Massey University) ;
  • Cheong, Sun-Hee (Korea Nokyong Research Center, Konkuk University) ;
  • Kim, Myeong-Hwa (Korea Nokyong Research Center, Konkuk University) ;
  • Kim, Sung-Jin (Korea Nokyong Research Center, Konkuk University) ;
  • Sung, Si-Heung (Korea Nokyong Research Center, Konkuk University) ;
  • Park, Pyo-Jam (Korea Nokyong Research Center, Konkuk University) ;
  • Park, Jae-Hyun (Korea Nokyong Research Center, Konkuk University) ;
  • Moon, Sang-Ho (Korea Nokyong Research Center, Konkuk University)
  • Received : 2010.03.09
  • Accepted : 2010.06.08
  • Published : 2010.06.30

Abstract

In order to investigate the physiological properties of velvet antler of elk (Cervus e. canadensis) raised in Korea, antlers (n=378) were collected from deer in 8 provinces including Gyeonggi-do (n=53), Gangwon-do (n=49), Chungcheongbuk-do (n=62), Chungcheongnam-do (n=68), Jeollabuk-do (n=52), Jeollanam-do (n=15), Gyeongsangbuk-do (n=30) and Gyeongsangnam-do (n=49). The exterior characteristics (weight, length, girth and crown) of all antlers were measured, and 18 antler samples were randomly selected for measurement of interior characteristics such as specific gravity, capacity and diameter of cross section. The mean antler weight, length of the main beam and mean length of upper section were $4.87{\pm}1.79\;kg$, $83.7{\pm}13.2\;cm$ and $40.6{\pm}11.4\;cm$, respectively. Mean girth of the top, middle and base of the main beam were $27.1{\pm}5.9\;cm$, $22.1{\pm}3.6\;cm$ and $22.9{\pm}3.6\;cm$ respectively, indicating a slight narrowing in the middle of the antler. In each of the tines, the girth at the base was markedly thicker compared to the top. The depth of the crown at the top of the antler, and the average number of crowns and tines were $14.1{\pm}7.0\;cm$, $2.1{\pm}0.6$ and $3.0{\pm}0.5$, respectively. Although there was no significant difference in mean specific gravity between top and base, mean specific gravity of main beam tended to increase from top to base of the antler with decreasing capacity. Additionally, the inner diameter of the base of the antler was significantly reduced compared to that of the top, indicating a greater integumental thickening due to mineralization. Information on the morphological and physiological properties of elk antlers is scarce. Therefore, these results may be useful in providing basic information for the physiological properties of antler, and encourage further studies on antler morphology in other deer species showing species specific differences.

Keywords

References

  1. Ball, A. J., Thompson, J. M. and Fennessy, P. F. 1994. Relationship between velvet antler weight and liveweight in red deer (Cervus elaphus). N. Z. J. Agric. Res. 37:153-157. https://doi.org/10.1080/00288233.1994.9513052
  2. Banks, W. J. 1974. The ossification process of the developing antler in the white-tailed deer (Odocoileus virginianus). Calcif. Tissue Res. 14:257-274. https://doi.org/10.1007/BF02060300
  3. Chapman, D. I. 1975. Antlers-bones of contention. Mamm. Rev. 5:121-172. https://doi.org/10.1111/j.1365-2907.1975.tb00194.x
  4. Elliott, J. L., Oldham, J. M., Asher, G. W., Molan, P. C. and Bass, J. J. 1996. Effect of testosterone on binding of insulinlike growth factor-I (IGF-I) and IGF-II in growing antlers of fallow deer (Dama dama). Growth Regul. 6:214-221.
  5. Fennessy, P. F. and Suttie, J. M. 1985. Antler growth: Nutritional and endocrine factors. In: Biology of Deer Production, Fennessy, P. F. and Drew, K. R. (Eds.) New Zealand: Royal Society of New Zealand Bulletin 22. pp.239-250.
  6. Fierro, Y., Gortazar, C., Landete.Castillejos, T., Vicente, J., Garcia, A. and Gallego, L. 2002. Baseline values for cast antlers of Iberian red deer (Cervus elaphus hispanicus). Z. Jagdwiss. 48:1-8.
  7. Gaspar.Lopez, E., Jose Garcia, A., Landete.Castillejos, T., Carrion, D., Estevez, J. A. and Galleg, L. 2008. Growth of the first antler in Iberian red deer (Cervus elaphus hispanicus). Eur. J. Wildl. Res. 54:1-5. https://doi.org/10.1007/s10344-007-0096-0
  8. Gomez, J. A., Garcia, A., Landete-Castillejos, T. and Gallego, L. 2006. Effect of advancing births on testosterone evolution until 2.5 years of age and puberty in Iberian red deer (Cervus elaphus hispanicus). Anim. Reprod. Sci. 96:79-88. https://doi.org/10.1016/j.anireprosci.2005.11.008
  9. Goss, R. J. 1983. Developmental anatomy of antlers. In: Deer Antlers: Regeneration, Function and Evolution. Goss, R. J. (Ed.) Academics Press. New York, U.S.A., pp.133-171.
  10. Hemmings, S. and Song, X. 2004. The effects of elk velvet antler consumption on the rat: Development, behaviour, toxicity and the activity of liver gamma-glutamyltranspeptidase. Comp. Biochem. Physiol. 138:105-112. https://doi.org/10.1016/j.cbpb.2004.03.002
  11. Hyvarinen, H., Kay, R. N. and Hamilton, W. J. 1977. Variation in the weight, specific gravity and composition of the antlers of red deer (Cervus elaphus L). Br. J. Nutr. 38(3):301-311. https://doi.org/10.1079/BJN19770094
  12. Ian, T., Tony, P. and Bruce, F. 2000. Elk farming handbook. pp.187-200.
  13. Jeon, B. T., Lee, S. M., Kim, M. H. and Moon, S. H. 2005. Effects of dietary protein level on production and chemical composition of velvet antler in spotted deer (Cervus Nippon). J. Anim. Sci. & Technol. (Kor.). 47(5):805-812. https://doi.org/10.5187/JAST.2005.47.5.805
  14. Kierdorf, U., Schultz, M. and Fischer, K. 1993. Effects of an antiandrogen treatment on the antler cycle of male fallow deer (Dama dama L.). J. Exp. Zool. 266:195-205. https://doi.org/10.1002/jez.1402660305
  15. Kruuk, E. B., Slate, J., Pemberton, J. M., Brotherstone, S., Guinness, F. and Clutton-Brock, T. 2002. Antler size in red deer: heritability and selection but no evolution. Evolution 56(8):1683-16959. https://doi.org/10.1111/j.0014-3820.2002.tb01480.x
  16. Landete-Castillejos, T., Garcia, A. and Gallego, L. 2001. Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): effect of birth date and hind milk composition. J. Anim. Sci. 79:1085-1092. https://doi.org/10.2527/2001.7951085x
  17. Landete-Castillejos, T., Garcia, A. and Gallego, L. 2007. Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus). Bone 40:230-235. https://doi.org/10.1016/j.bone.2006.07.009
  18. Li, C. and Suttie, J. M. 1994. Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). Anat. Rec. 239:198-215. https://doi.org/10.1002/ar.1092390211
  19. Li, C. and Suttie, J. M. 2000. Histological studies of pedicle skin formation and its transformation to antler velvet in red deer (Cervus elaphus). Anat. Rec. 260:62-71. https://doi.org/10.1002/1097-0185(20000901)260:1<62::AID-AR70>3.0.CO;2-4
  20. Modell, W. 1969. Horns and antlers. Sci. Am. 220:114-122. https://doi.org/10.1038/scientificamerican0469-114
  21. Moore, G. E., Littlejohn, R. P. and Cowie, G. M. 1988. Liveweights, growth rates and antler measurements of farmed deer stags and their usefulness as predictors of performance. N. Z. J. Agric. Res. 31:285-292. https://doi.org/10.1080/00288233.1988.10423417
  22. Moreau, M., Dupuis, J., Bonneau, N. H. and Lecuyer, M. 2004. Clinical evaluation of a powder of quality elk velvet antler for the treatment of osteoarthritis in dogs. Can. Vet. J. 45:133-139.
  23. Muir, P. D. and Sykes, A. R. 1988. Effect of winter nutrition on antler development in red deer (Cervus elaphus): a field study. N. Z. J. Agric. Res. 31:145-150. https://doi.org/10.1080/00288233.1988.10417938
  24. Muir, P. D., Sykes, A. R. and Barrell, G. K. 1987. Calcium metabolism in red deer (Cervus elaphus) offered herbages during antlerogenesis: kinetic and stable balance studies. J. Agric. Sci. Camb. 109:357-364. https://doi.org/10.1017/S0021859600080783
  25. Schmidt, K. T., Stien, A., Albon, S. D. and Guinness, F. E. 2001. Antler length of yearling red deer is determined by population density, weather and early life-history. Oecologia 127:191-197. https://doi.org/10.1007/s004420000583
  26. Sim, J. S. 1987. Uses of traditional medicines in Korea-deer antlers. In: Focus on a New Industry of the Alberta Game Grower's Association Conference. Renecker, L. A. (Ed.) pp.68-70.
  27. Sunwoo, H. H., Nakano, T., Hudson, R. J. and Sim, J. S. 1995. Chemical composition of antlers from Wapiti (Cervus elaphus). J. Agric. Food Chem. 43:1846-1849.
  28. Turner, C. H. and Burr, D. B. 1993. Basic biomechanical measurements of bone: a tutorial. Bone 14:595-608. https://doi.org/10.1016/8756-3282(93)90081-K
  29. Ullrey, D. E. 1983. Nutrition and antler development in white-tailed deer. In: Antler Development in Cervidae. Brown, R. D. (Ed.). Caesar Kleberg Wildlife Research Institute, Kingsville, TX, U.S.A., pp.49-59.
  30. Ungerfeld, R., Bielli, A., Gonzalez-Pensado, S. X., Villagran, M.and Gonzalez-Sierra, U. T. 2008. Antler size and weight in a herd of pampas deer (Ozotoceros bezoarticus). Mamm. Biol. 73(6):478-481. https://doi.org/10.1016/j.mambio.2007.12.004
  31. Wolfe, G. J. 1982. The relationship between age and antler development in wapiti. In: Antler development in Cervidae. Brown, R. D. (Ed.). Caesar Kleberg Wildlife Research Institue, Kingsville, TX, U.S.A., pp.29-36.