Effect of Yukgunja-tang on Glutamate-induced Apoptosis in C6 Glial Cells

육군자탕(六君子湯)이 Glutamate에 의한 C6 신경교세포의 Apoptosis에 미치는 영향

  • Jang, Won-Seok (Dept. of Internal Medicine, College of Oriental Medicine, Won-Kwang University) ;
  • Shin, Yong-Jeen (Dept. of Internal Medicine, College of Oriental Medicine, Won-Kwang University) ;
  • Ko, Seok-Jae (Dept. of Internal Medicine, College of Oriental Medicine, Won-Kwang University) ;
  • Ha, Ye-Jin (Dept. of Internal Medicine, College of Oriental Medicine, Won-Kwang University) ;
  • Kwon, Young-Mi (Dept. of Diagnostic Radiology, College of Oriental Medicine, Won-Kwang University) ;
  • Shin, Sun-Ho (Dept. of Internal Medicine, College of Oriental Medicine, Won-Kwang University)
  • 장원석 (원광대학교 한의과대학 내과학교실) ;
  • 신용진 (원광대학교 한의과대학 내과학교실) ;
  • 고석재 (원광대학교 한의과대학 내과학교실) ;
  • 하예진 (원광대학교 한의과대학 내과학교실) ;
  • 권영미 (원광대학교 한의과대학 영상의학과) ;
  • 신선호 (원광대학교 한의과대학 내과학교실)
  • Published : 2010.09.30

Abstract

Objective : The water extract of Yukgunja-tang(YGJT) has been traditionally used in treatment of qi deficiency and phlegm in Oriental medicine. However, little is known about the mechanism by which YGJT protects neuronal cells from injury damages. Therefore, this study was designed to evaluate the protective effects of YGJT on C6 glial cells by glutamate-induced cell death. Methods : The present study describes glutamate, which is known as an excitatory neurotransmitter, related with oxidative damages, and YGJT, which shows protective effects against glutamate-induced C6 glial cell death. One of the main mediators of glutamate-induced cytotoxicity was known on the generation of reactive oxygen species(ROS) via activation of NADPH oxidase (NOX). The protective effects of antioxidant(NAC) and NOX inhibitor(apocynin) on the glutamate-induced C6 glial cells were determined by a MTT reduction assay. Result : YGJT inhibited glutamate-induced ROS generation via inhibition of NOX expression on glutamate-stimulated C6 glial cells. Furthermore, YGJT attenuated glutamate-induced caspase activation. These results suggest that YGJT could be a new potential candidate against glutamate-induced oxidative stress and cell death. Conclusion : These findings indicate that in C6 glial cells, ROS plays an important role of glutamate-induced cell death and that YGJT may prevent cell death from glutamate-induced cell death by inhibiting the ROS generation.

Keywords

References

  1. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P. The second brain and Parkinson's disease. Eur J Neurosci. 2009;30(5):735-41. https://doi.org/10.1111/j.1460-9568.2009.06873.x
  2. Chitnis S, Rao J. Rivastigmine in Parkinson's disease dementia. Expert Opin Drug Metab Toxicol. 2009;5(8):941-55. https://doi.org/10.1517/17425250903105420
  3. Cunningham LM, Nugent CD, Finlay DD, Moore G, Craig D. A review of assistive technologies for people with Parkinson's disease. Technol Health Care. 2009;17(3):269-79.
  4. Białecka M, Robowski P, Honczarenko K, Roszmann A, Sławek J. Genetic and environmental factors for hyperhomocysteinaemia and its clinical implications in Parkinson's disease. Neurol Neurochir Pol. 2009;43(3):272-85.
  5. Robottom BJ, Weiner WJ. Dementia in Parkinson's disease. Int Rev Neurobiol. 2009;84:229-44. https://doi.org/10.1016/S0074-7742(09)00412-7
  6. Bhak G, Choe YJ, Paik SR. Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. BMB Rep. 2009;42(9):541-51. https://doi.org/10.5483/BMBRep.2009.42.9.541
  7. Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther. 2009;86(4):368-77. https://doi.org/10.1038/clpt.2009.138
  8. Kovari E, Horvath J, Bouras C. Neuropathology of Lewy body disorders. Brain Res Bull. 2009; 80(4-5):203-10. https://doi.org/10.1016/j.brainresbull.2009.06.018
  9. Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta. 2009;1793 (10):1540-70. https://doi.org/10.1016/j.bbamcr.2009.06.001
  10. Deslandes A, Moraes H, Ferreira C, Veiga H, Silveira H, Mouta R, Pompeu FA, Coutinho ES, Laks J. Exercise and mental health: many reasons to move. Neuropsychobiology. 2009; 59(4):191-8. https://doi.org/10.1159/000223730
  11. Modi G, Pillay V, Choonara YE, Ndesendo VM, du Toit LC, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol. 2009;88(4):272-85. https://doi.org/10.1016/j.pneurobio.2009.05.002
  12. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5(6):311-22. https://doi.org/10.1038/nrneurol.2009.54
  13. Uversky VN. Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci. 2009;14:5188-238. https://doi.org/10.2741/3594
  14. 大韓神經外科學會. 神經外科學. 서울: 中央文化社; 1997, p. 276-8.
  15. Peter L. Ischemic Cell Death in Brain Neurons. Physiol. Review. 1997;70:1499.
  16. Hisano K, Watanabe M, Morimoto Y. Protective effects of the free radical scavenger edaravone against glutamate neurotoxicity in nearly pure neuronal culture. J Anesth. 2009;23(3):363-9. https://doi.org/10.1007/s00540-009-0766-z
  17. Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2008;2(4):879-89.
  18. Jantas D, Jaworska-Feil L, Lipkowski AW, Lason W. Effects of TRH and its analogues on primary cortical neuronal cell damage induced by various excitotoxic, necrotic and apoptotic agents. Neuropeptides. 2009;43(5):371-85. https://doi.org/10.1016/j.npep.2009.07.002
  19. Bei W, Zang L, Guo J, Peng W, Xu A, Good DA, Hu Y, Wu W, Hu D, Zhu X, Wei M, Li C. Neuroprotective effects of a standardized flavonoid extract from Diospyros kaki leaves. J Ethnopharmacol. 2009;126(1):134-42. https://doi.org/10.1016/j.jep.2009.07.034
  20. Liu L, Zhang R, Liu K, Zhou H, Tang Y, Su J, Yu X, Yang X, Tang M, Dong Q. Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res. 2009; 87(16):3576-90. https://doi.org/10.1002/jnr.22151
  21. Saha RN, Ghosh A, Palencia CA, Fung YK, Dudek SM, Pahan K. TNF-alpha preconditioning protects neurons via neuron-specific up-regulation of CREB-binding protein. J Immunol. 2009;183(3): 2068-78. https://doi.org/10.4049/jimmunol.0801892
  22. Zhu X, Yao H, Peng F, Callen S, Buch S. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium. Toxicol Appl Pharmacol. 2009;240(2):286-91. https://doi.org/10.1016/j.taap.2009.06.020
  23. 虞摶. 醫學正傳. 北京: 人民衛生出版社; 1981, p. 133.
  24. 徐春甫. 古今醫統秘方. 서울: 金剛出版社; 1982, p. 1999.
  25. 李梴. 醫學入門. 서울: 大星文化社; 1982, p. 417-18, 421.
  26. 朱震亨. 丹溪心法. 서울: 大星文化社; 1982, p. 194, 319, 327-8.
  27. 汪昻. 편집의방집해. 서울: 도서출판반룡; 2004, p. 26.
  28. 龔廷賢. 萬病回春. 서울: 杏林書院; 1972, p. 150, 189.
  29. 이승재, 문병순, 김세길. 四君子湯, 二陳湯 및 六君子湯이 高脂血症에 미치는 影響. 대한한방내과학회지. 1994;15(1):45-59.
  30. 정현우, 김희성. 四君子湯, 二陳湯, 六君子湯이 腦血流力學變動에 미치는 실험적 연구. 동의생리병리학회지. 2004;18(1):75-83.
  31. 이석진, 정현우. 六君子湯과 竹瀝혼합물이 국소 腦血流量및 평균혈압에 미치는 효과. 동의생리병리학회지. 2007;21(1):54-61.
  32. 辛民敎. 新增方藥合編. 서울: 永林社; 2003, p. 160.
  33. Yoon, M. Y., Kim, J. Y., Hwang, J. H., Cha, M. R., Lee, M. R., Jo, K. J. and Park, H. R. Protective effect of methanolic extracts from Dendrobium nobile Lindl. on $H_{2}O_{2}$-induced neurotoxicity in PC12 cells. J. Korean Soc. Appl. Biol. Chem. 2007;50:63-7.
  34. Sagara, Y., Dargusch, R., Chambers, D., Davis, J., Schubert, D. and Mater, P. Cellular mechanisms of resistance to chronic oxidative stress. Free Radic. Biol. Med. 1998;24:1375-89. https://doi.org/10.1016/S0891-5849(97)00457-7
  35. Lee, Y. S. Antioxidative and physiological activity of extracts of Angelica dahurica leaves. Korean J. Food Preserv. 2007;14:78-86.
  36. Kim, D. J., Seong, K. S., Kim, D. W., Ko, S. R. and Chang, C. C. Antioxidative effects of red ginseng saponins on paraquat-induced oxidative stress. J. Ginseng Res. 2004;28:5-10. https://doi.org/10.5142/JGR.2004.28.1.005
  37. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915-22. https://doi.org/10.1073/pnas.90.17.7915
  38. Halliwell, B. and Aruoma, O. DNA damage by oxygen derived species. FEBS Lett. 1991;281: 9-19. https://doi.org/10.1016/0014-5793(91)80347-6
  39. Vannucci RC, Perlman JM. Intervention for perinatal hypoxic-ischemic encephalopathy. Pediatrics. 1997;100:1004-14. https://doi.org/10.1542/peds.100.6.1004
  40. Taylor DL, Edwards AD, Mehmet H. Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol. 1999;9:93-117.
  41. Mishra OP, Delivoria-Papadopoulos M. Cellular mechanism of hypoxic injury in the developing brain. Brain Res. Bull. 1999;48:233-8. https://doi.org/10.1016/S0361-9230(98)00170-1
  42. Olney JW. Brain lesions, obesity and other disturbance in mice treated with monosodium glutamate. Science. 1969;164:719-21. https://doi.org/10.1126/science.164.3880.719
  43. Ford LM, Sanberg PR, Norman AB. MK-801 prevents hippocampal neurodegeneration in neonatal hypoxic-ischemic rats. Arch. Neurol. 1989;6: 1090-6.
  44. Johnston MV, Trescher WH, Ishida A, Nakajima W. Novel treatments after experimental brain injury. Semin. Neonatol. 2000;5:75-86. https://doi.org/10.1053/siny.1999.0116
  45. Monagham DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors : their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann. Rev. Pharmacol. Toxicol. 1989;29:365-402. https://doi.org/10.1146/annurev.pa.29.040189.002053
  46. Schoepfer R, Monyer H, Sommer B, Wisden W, Sprengel R, Kuner T, et al. Molecular biology of glutamate receptors. Prog. Neurobiol. 1994; 42:353-7. https://doi.org/10.1016/0301-0082(94)90076-0
  47. Graham SH, Chen J, Shape FR. Limiting ischemic injury by inhibition of exciting amino acid release. J. Cereb. Blood Flow. Metab. 1993;13:88-97. https://doi.org/10.1038/jcbfm.1993.11
  48. Nicoletti F, Wroblewski JT, Novelli A, Alho H, Guidotti A, Costa E. The activation of inositol phospholipid metabolism as a single-transducing system for excitatory aminoacids in primary cultures of cerebral granular cells. J. Neurochem. 1986;6:1905-11.
  49. Vexler ZS, Ferriero DM. Molecular and biochemical mechanism of perinatal brain injury. Semin. Neonatol. 2001;6:99-108. https://doi.org/10.1053/siny.2001.0041
  50. 許浚. 東醫寶鑑. 경남: 동의보감출판사; 2005, p. 218.
  51. 김중길, 설인찬. 이 인. 조현경, 유병찬, 최선미. 한의 중풍변증 표준안-I에 대한 보고. 동의생리병리학회지. 2006;20(1):229-34.
  52. 강지선, 강병갑, 안정조, 조현경, 유호룡, 설인찬, 김윤식. 한국형 중풍변증 표준안-II의 변증별 사용 처방에 대한 연구. 동의생리병리학회지. 2008;22(2):469-80.
  53. Li H, Han W, Villar VA, Keever LB, Lu Q, Hopfer U, Quinn MT, Felder RA, Jose PA, Yu P. D1-like receptors regulate NADPH oxidase activity and subunit expression in lipid raft microdomains of renal proximal tubule cells. Hypertension. 2009;53(6):1054-61. https://doi.org/10.1161/HYPERTENSIONAHA.108.120642
  54. Han W, Li H, Villar VA, Pascua AM, Dajani MI, Wang X, Natarajan A, Quinn MT, Felder RA, Jose PA, Yu P. Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells. Hypertension. 2008;51(2): 481-7. https://doi.org/10.1161/HYPERTENSIONAHA.107.103275
  55. Xie XQ, Shinozawa Y, Sasaki J, Takuma K, Akaishi S, Yamanouchi S, Endo T, Nomura R, Kobayashi M, Kudo D, Hojo N. The effects of arginine and selective inducible nitric oxide synthase inhibitor on pathophysiology of sepsis in a CLP model. J Surg Res. 2008;146(2): 298-303. https://doi.org/10.1016/j.jss.2007.07.016