DOI QR코드

DOI QR Code

Shear Strength Prediction of FRP RC Baem without Shear Reinforcements

전단 보강이 없는 FRP RC보의 전단강도 예측

  • 이재훈 (영남대학교 건설시스템공학과) ;
  • 신성진 (영남대학교 건설시스템공학과)
  • Received : 2009.08.24
  • Accepted : 2010.03.22
  • Published : 2010.06.30

Abstract

There are many problems in application of FRP reinforcing bars as shear reinforcement, since bending of FRP bars is not a feasible process on construction site. Even though FRP bars can be manufactured in bent shape, they have lower strength at bent location. However, there are no serious problems to use FRP bars as flexural reinforcement. Plates or slabs like bridge decks, in general, do not need shear reinforcements. These types of members with FRP flexural reinforcement have lower shear strength than those with conventional steel flexural reinforcement. However, reliable process or equation for shear strength estimation of FRP reinforced concrete without shear reinforcement are not established, yet. In this study, predicted shear strength obtained from available design equations and assessment equations are compared with 211 experimental results. The results showed that among the current design codes, the Architectural Institute of Japan (AIJ) and the Institution of Structural Engineers (ISE) provided the best estimation. ACI 440.1R-06 provided conservative results with degree of dispersion similar to that of ISE. In addition, regression analysis on the collected experimental results was conducted to develop regression models. As a result, a new reliable shear strength equation was proposed.

FRP 보강근은 현장 가공이 용이하지 않고 만곡부에서 강도가 저하되는 등 전단보강근으로 사용하기에는 해결해야 할 문제점이 많다. 전단보강을 필요로 하지 않는 구조요소에 FRP 보강근을 휨보강근으로 사용하는 것은 별 어려움 없이 적용할 수 있다. 교량 바닥판이나 복개시설의 슬래브 등은 대부분 판상 구조로 전단보강이 없는 부재들이며, FRP 보강근을 휨보강근으로 사용하는 경우에는 RC구조에 비하여 전단강도가 높지 않은 특성이 있다. 그러나 이러한 형식의 구조물에 대한 신뢰성 있는 전단강도 산정 기준이 확립되지 않은 상태이다. 이 연구에서는 FRP RC의 전단거동을 관찰한 선행연구 결과와 함께 문헌 조사를 통하여 관련 자료 211개를 축적하고, 각국의 전단강도 산정 기준과 비교 검토하였다. 분석 결과 AIJ, ISE 기준이 가장 우수하였으며, ACI 440.1R-06의 기준은 보수적인 설계를 제공하지만 분산 정도는 ISE와 유사하여 항상 일관성 있는 예측 값을 주는 장점이 있었다. 합리적인 새로운 전단강도식을 개발하기 위하여 표본자료의 전단강도를 가장 잘 설명할 수 있는 회귀모형을 구축하였으며 기존 설계식과 비교 검토하였다. 구축된 회귀모형을 기반으로 정확도가 높고 분산도가 작은 새로운 전단강도식을 제안하였다.

Keywords

References

  1. Rubinsky, I. A. and Rubinsky, A., “A Preliminary Investigation of the Use of Fiber Glass for Prestressed Concrete,” Magazine of Concrete Research, Sept., 1959, pp. 71-78.
  2. Nawy, E. G., Neuwerth, G. E., and Phillips, C. J., “Behavior of Fiber Glass Reinforced Concrete Beams,” Journal of the Structural Division, ASCE, Vol. 97, No. ST9, 1971, pp. 2203-2215.
  3. Nawy, E. G. and Neuwerth, G. E., “Fiberglass Reinforced Concrete Slabs and Beams,” Journal of the Structural Division, ASCE, Vol. 103, No. ST2, 1977, pp. 421-440.
  4. Nanni, A., “Flexural Behavior and Design of RC Members Using FRP Reinforcement,” Journal of Structural Engineering, ASCE, Vol. 119, No. 11, 1993, pp. 3344-3359. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3344)
  5. Benmokrane, B., Chaallal, O., and Masmoudi, R., “Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars,” ACI Structural Journal, Vol. 93, No. 1, 1996, pp. 46-55.
  6. Michaluk, C. R., Rizkalla, S. H., Tadros G., and Benmokrane, B., “Flexural Behavior of One-way Concrete Slabs Reinforced by Fiber Reinforced Plastic Reinforcements,” ACI Structural Journal, Vol. 95, No. 3, 1998, pp. 353-365.
  7. 한국콘크리트학회, “FRP 보강근을 사용한 콘크리트 구조물 설계 및 시공지침(안)” 한국콘크리트학회 봄 학술대회, 2008, 67 pp.
  8. Canadian Standard Association, Canadian Highway Bridge Design Code(CSA S6-06), Rexdale, Ontario, Canada, 2006, 788 pp.
  9. Matta, F., Nanni, A., Hernandez, T. M., and Benmokrane, M., “Scaling of Strength of FRP Reinforced Concrete Beams without Shear Reinforcement,” Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) Zurich, Switzerland, July, 2008, pp. 1-6.
  10. 이재훈, 신성진, 손현아, “전단 보강이 없는 FRP RC보의 전단 파괴 거동,” 콘크리트학회 논문집, 22권, 2호, 2010, pp. 199-208. https://doi.org/10.4334/JKCI.2010.22.2.199
  11. ACI-ASCE Joint Committee 326, “Shear and Diagonal Tension,”ACI Journal, Vol. 59, No. 1, 1962, pp. 1-30.
  12. ACI-ASCE Joint Committee 326, “Shear and Diagonal Tension,”ACI Journal, Vol. 59, No. 2, 1962, pp. 1-30.
  13. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318M-08) and Commentary, American Concrete Institute, Farmington Hills, MI, 2008, 473 pp.
  14. Rajagopalan, K. S. and Ferguson, P. N., “Exploratory Shear Tests Emphasizing Percentage of Longitidinal Steel,” ACI Journal, Vol. 65, 1968, pp. 634-638.
  15. Zsutty, T. C., “Beam Shear Strength Prediction by Analysis of Existing Data,” ACI Journal, Vol. 65, 1968, pp. 943-951.
  16. MacGregor, James G., Reinforced Concrete Mechanics & Design, Prentice hall, Englewood Colffs, New Jersey, 1992, 848 pp.
  17. Trueyen, A. K. and Frosch, R. J., “Concrete Shear Strength: Another Perspective,” ACI Structural Journal, Vol. 100, No. 5, 2003, pp. 609-615.
  18. ACI Committee 440, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-06), American Concrete Institute, Farmington Hills, Michigan, 2006, 44 pp.
  19. Deitz, D. H., Harik, I. E., and Gesund, H., “One-Way Slabs Reinforced with Glass Fiber Reinforced Polymer Reinforcing Bars,” ACI Proceeding 4th International Symposium on FRP Reinforcement for Reinforced Concrete Structures, SP-188, 1999, pp. 279-286.
  20. El-Sayed, A. K., El-Salakawy, E. F., and Benmokrane, B., “Shear Strength of One-Way Concrete Slabs Reinforced with Fiber-Reinforced Polymer Composite Bars,” Journal of Composites for Construction, ASCE, Vol. 9, No. 2, 2005, pp. 147-157. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(147)
  21. Razaqpur, A. G. and Isgor, O. B., “Proposed Shear Design Method for FRP-Reinforced Concrete Members without Stirrups,” ACI Structural Journal, Vol. 103, No. 1, 2006, pp. 93-102.
  22. ASCE-ACI Joint Committee 426, “The Shear Strength of Reinforced Concrete Members,” Journal of Structural Division, ASCE, Vol. 99, No. ST6, 1973, pp. 1091-1187.
  23. 최익창, 연준희, 김대웅, “철근 및 FRP Rods로 보강한 콘크리트 보의 전단 내하 거동,” 대한토목학회 정기학술대회논문집, 2003, pp. 1235-1240.
  24. Tottori, S. and Wakui, H., Shear Capacity of RC and PC Beams Using FRP Reinforcement, Fiber Reinforced-Plastic Reinforcement for Concrete Structures, (Eds. A. Nanni and C. W. Dolan), SP-138, ACI, 1993, pp. 615-632.
  25. 조재민, 장희석, 김충호, 김명식, “FRP bar 콘크리트 보의 콘크리트 전단강도,” 대한토목학회 정기학술대회논문집, 2008, pp. 385-388.
  26. 박종섭, 박영환, 유영준, “GFRP 보강근 콘크리트 보의 전단성능에 대한 실험적 고찰,” 한국콘크리트학회 가을학술대회 논문집, 20권, 2호, 2008, pp. 57-60.
  27. ACI Committee 440, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-03), American Concrete Institute, Farmington Hills, Michigan, 2003, 42 pp.
  28. Canadian Standard Association, Design and Construction of Building Components with Fibre-Reinforced Polymers (CSA S806-02), Rexdale, Ontario, Canada, 2002, 177 pp.
  29. ISIS Canada, Reinforcing Concrete Structures with Fibre Reinforced Polymers (ISIS-MO3-01), ISIS Canada Corporation, Winnipeg, Manitoba, 2001, 81 pp.
  30. Canadian Standard Association, “Design of Concrete Structures (CSA S23.3-04),” Rexdale, Ontario, Canada, 2004, 214 pp.
  31. Bakht, B., Al-Bazi, G., Banthia, N., Cheung, M., Erki, M., Faoro, M., Machida, A., Mufti, A. A., Neale, K. W., and Tadros, G., “Canadian Bridge Design Code Provisions for Fiber-Reinforced Structures,” Journal of Composites for Construction, ASCE, Vol. 4, No. 1, 2000, pp. 3-15. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:1(3)
  32. Japan Society of Civil Engineers, “Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials,” Research Committee on Continuous Fiber Reinforced Materials, Concrete Engineering Series 23, Machida, A., ed. Tokyo, Japan, 1997.
  33. Nagasaka, T., Fukuyama, H., and Tanigaki, H., “Shear Performance of Concrete beams reinforced with FRP Stirrups,” Fiber Reinforced-Plastic Reinforcement for Concrete Structures, (Eds. A. Nanni and C. W. Dolan), SP-138, ACI, 1993, pp. 789-811.
  34. Sonobe, Y., Fukuyama, H., Okamoto, T., Kani, N., Kimura, K., Kobayashi, K., Masuda, Y., Matsuzaki, Y., Mochizuki, S., Nagasaka, T., Shimizu, A., Tanano, H., Tanigaki, M., and Teshigawara, M., “Design Guidelines of FRP Reinforced Concrete Building Structures,” Journal of Composites for Construction, ASCE, Vol. 1, No. 3, 1997, pp. 90-115. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:3(90)
  35. Architectural Institute of Japan, Standard for Structural Calculation of Reinforced Concrete Structures, Tokyo, Japan, 1988, 412 pp.
  36. Institution of Structural Engineers, Interim Guidance on the Design of Reinforced Concrete Structures Using Fibre Composite Reinforcement, London, UK, 1999, 116 pp.
  37. Zhao, W., Maruyama, K., and Suzuki, H., “Shear Behavior of Concrete Beams Reinforced by FRP Rods as Longitudinal and Shear Reinforcement,” Non-metallic (FRP) Reinforcement for Concrete Structures, FRPRCS-2, 1995, pp. 352-359.
  38. Mizukawa, Y., Sato, Y., Ueda, T., and Kakuta, Y., “A Study on Shear Fatigue Behavior of Concrete Beams with FRP Rods”, Non-metallic (FRP) Reinforcement for Concrete Structures, FRPRCS-3, 1997, pp. 309-316.
  39. Duranovic, N., Pilakoutas, K., and Waldron, P., “Tests on Concrete Beams Reinforced with Glass Fibre Reinforced Plastic Bars,” Non-metallic (FRP) Reinforcement for Concrete Structures, FRPRCS-3, 1997, pp. 479-486.
  40. Swamy, N. and Aburawi, M., “Structural Implications of Using GFRP Bars as Concrete Reinforcement,” Non-metallic (FRP) Reinforcement for Concrete Structures, FRPRCS-3, 1997, pp. 503-510.
  41. Yost, J. R., Gross, S. P., and Dinehart, D. W., “Shear Strength of Normal Strength Concrete Beams Reinforced with Deformed GFRP Bars,” Journal of Composites for Construction, ASCE, Vol. 5, No. 4, 2001, pp. 268-275. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(268)
  42. Alkhrdaji, T., Wideman, M., Belarbi, A., and Nanni, A., “Shear Strength of RC Beams and Slabs,” Composite in Construction, J. Figueiras, L. Juvandes, and R. Faria, eds., A. A. Balkema, Lisse, The Netherlands, pp. 409-414.
  43. Trueyen, A. K. and Frosch, R. J., “Shear Tests of FRP-Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, Vol. 99, No. 4, 2002, pp. 427-434.
  44. Tariq, M. and Newhook, J. P., “Shear Testing of FRP Reinforced Concrete without Transverse Reinforcement,” Proceeding of Annual Conference of the Canadian Society for Civil Engineering, Moncton, Canada, 2003, pp. 1-10.
  45. Lubell, A., Sherwood, T., Bentz, E., and Nollins, M. P., “Safe Shear Design of Large, Wide Beams,” Concrete International, Jan. 2004, pp. 67-78.
  46. El-Salakawy, E. F. and Benmokrane, B., “Serviceability of Concrete Bridge Deck Slabs Reinforced with Fiber-Reinforced Polymer Composite Bars,” ACI Structural Journal, Vol. 101, No. 5, 2004, pp. 727-736.
  47. Gross, S. P., Yost, J. R., Dinehart, D. W., and Svensen, E., Liu, N., “Shear Strength of Normal and High Strength Concrete Beams Reinforced with GFRP Reinforcing Bars,” Proceeding of the International Conference on High Performance Materials in Bridges, ASCE, 2003, pp. 426-437.
  48. Gross, S. P., Dinehart, D. W., Yost, J. R., and Theisz, P. M., “Experimental Tests of High-Strength Concrete Beams Reinforced with CFRP Bars,” Proceeding of the 4th International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-4), Calgary, Canada, 2004,pp. 1-8.
  49. Razaqpur, A. G., Isgor, O. B., Greenway, S., and Selley, A., “Concrete Contribution to the Shear Resistance of Fiber Reinforced Polymer Reinforced Concrete Members,” Journal of Composites for Construction, ASCE, Vol. 8, No. 5, 2004, pp. 452-460. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(452)
  50. El-Sayed, A. K., El-Salakawy, E. F., and Benmokrane, B., “Shear Strength of FRP-Reinforced Concrete Beams without Transverse Reinforcement,” ACI Structural Journal, Vol. 103, No. 2, 2006, pp. 235-243.
  51. El-Sayed, A. K., El-Salakawy, E. F., and Benmokrane, B., “Shear Capacity of High-Strength Concrete Beams Reinforced with FRP Bars,” ACI Structural Journal, Vol. 103, No. 3, 2006, pp. 383-389.
  52. Guadagnini, M., Pilakoutas, K., and Waldron, P., “Shear Resistance of FRP RC Beams: Experimental Syudy,” Journal of Composites for Construction, ASCE, Vol. 10, No. 6, 2006, pp. 464-473. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(464)
  53. 노경배, 진치섭, 정치홍, 장희석, “FRP Bar 콘크리트 보의 휨보강비 변화에 따른 콘크리트 전단강도,” 대한토목학회 정기학술대회논문집, 2005, pp. 1211-1214.
  54. 윤형수, 장희석, 김희성, “FRP Bar를 사용한 고강도 콘크리트 보의 콘크리트 전단강도,” 한국콘크리트학회 가을 학술대회 논문집, 17권, 2호, 2005, pp. 287-290.
  55. 정원일, 장희석, 김충호, 황금식, “CFRP bar 콘크리트보의 전단지간비 및 휨보강비 변화에 따른 콘크리트 전단 강도,” 대한토목학회 정기학술대회 논문집, 2007, pp. 2250-2253.
  56. 김재영, 김명갑, 김충호, 장희석, “GFRP bar 콘크리트보의 전단지간비 및 휨보강비의 변화에 따른 콘크리트 전단강도,” 한국콘크리트학회 가을 학술대회 논문집, 2007, pp. 113-116.
  57. Grieef, S. L., “GFRP Dowel Bars for Concrete Pavement,” MS Thesis, University of Manitoba, Canada, 1996, 154 pp.

Cited by

  1. Shear strength model for fibre reinforced polymer shear reinforced concrete beams vol.166, pp.3, 2013, https://doi.org/10.1680/stbu.11.00032
  2. Shear Strength Model for FRP Shear-Reinforced Concrete Beams vol.23, pp.2, 2011, https://doi.org/10.4334/JKCI.2011.23.2.185