DOI QR코드

DOI QR Code

Fabrication of TiO2 Nanotube Arrays by Anodic Oxidation Method and its Photoelectrochemical Properties

양극산화법에 의한 TiO2 나노튜브 어레이의 제조 및 광전기화학적 특성에 관한 연구

  • Kim, Seon-Min (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Cho, Kwon-Koo (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Choe, Yeong-Jin (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Kim, Ki-Won (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
  • 김선민 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 조권구 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 최영진 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 김기원 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 류광선 (울산대학교 화학과)
  • Received : 2010.04.14
  • Accepted : 2010.05.17
  • Published : 2010.06.28

Abstract

Self-standing $TiO_2$ nanotube arrays were fabricated by potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as electrolytes with small addition of $NH_4F$ and $H_2O$. The influences of anodization temperature and time on the morphology and formation of $TiO_2$ nanotube arrays were investigated. The fabricated $TiO_2$ nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of $TiO_2$ nanotube show a similar value, whereas the thickness show a different trend with reaction temperature. The thickness of $TiO_2$ nanotube arrays anodized at $20^{\circ}C$ and $30^{\circ}C$ was time-dependent, but on the other hand its at $10^{\circ}C$ are independent of anodization time. The conversion efficiency is low, which is due to a morphology breaking of the $TiO_2$ nanotube arrays in manufacturing process of photoelectrode.

Keywords

References

  1. A. Fujishima and K. Honda: Nature, 238 (1972) 37. https://doi.org/10.1038/238037a0
  2. A. Fujishima, K. Hashimoto and T. Watanabe: BKC INC. Tokyo (1999).
  3. M. Gratzel: J. photochem. Photobiol. A: Chem., 164(2004) 3. https://doi.org/10.1016/j.jphotochem.2004.02.023
  4. M. Law, L. E. Greene, J. C. Jhonson, R. Saykally andP. D. Yang: Nat. Mater., 4 (2005) 455. https://doi.org/10.1038/nmat1387
  5. R. Tenne and C. N. R. Rao: Philos. Trans. R. Soc. A,362 (2004) 2099. https://doi.org/10.1098/rsta.2004.1431
  6. M. Adachi, Y. Murata, I. Okada and S. Yoshikawa: J. Electrochem. Soc., 150 (2003) G488. https://doi.org/10.1149/1.1589763
  7. A. Hagfeld: M. Gratzel, Chem. Rev., 95 (1995) 49. https://doi.org/10.1021/cr00033a003
  8. D. Gong, C. A. Grimes, O. K. Varghese, W. hu, R. S.Singh, Z. Che and E. C. Dickey: J. Mater. Res., 16(2001) 3331. https://doi.org/10.1557/JMR.2001.0457
  9. Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes:J. Mater, Res., 20 (2005) 230. https://doi.org/10.1557/JMR.2005.0020
  10. G. K. Mor, K. Shankar, M. Paulose, O. K. Vargheseand C. A. Grimes: Nano Lett., 5 (2005) 191. https://doi.org/10.1021/nl048301k
  11. G. K. Mor, M. Paulose, K. Shankar and C. A. Grimes:Solar Energy Materials & Solar Cells, 90 (2006) 2011. https://doi.org/10.1016/j.solmat.2006.04.007
  12. B. O'Regan and M. Gratzel: Nature, 353 (1991) 737. https://doi.org/10.1038/353737a0
  13. A. Zaban and M. Greenshtein: J. Bisquert, Chem. Phys. Chem., 4 (2003) 859. https://doi.org/10.1002/cphc.200200615
  14. F. Fabregat-Santiago, J. Garcia-Canadas, E. Palomares, J.N. Clifford, S. A. Hazue, J. R. Durrant, G. Garcia-Belmonteand J. Bisquert: J. Apply. Phys., 96 (2004)6903. https://doi.org/10.1063/1.1812588
  15. K. Shankar, G. K. Mor, H. E. prakasam, S. Yoriya, M.Paulose, O. K. Varghese and C. A. Grimes: Nanotechnology,18 (2007) 065707. https://doi.org/10.1088/0957-4484/18/6/065707
  16. G. K. Mor, H. E. Prakasam, O. K. Varghese, K. Shankarand C. A. Grimes: Nano Lett., 7 (2007) 2356. https://doi.org/10.1021/nl0710046
  17. C. C. Chen, W. D. Hehng, L. L. Li and E. W-G. Diau:J. Electrochem. Soc., 156 (2009) C304. https://doi.org/10.1149/1.3153288
  18. M. Paulose, L. Peng, K. C. Popat, O. K. Varghese, T.J. Latempa, N. Bao, T. A. Desai and C. A. Grimes: J. Membr. Sci., 319 (2008) 199. https://doi.org/10.1016/j.memsci.2008.03.050
  19. F. M. Bayoumi and B. G. Ateya: Electrochem. Comm., 8 (2006) 3.
  20. F. C. Gennari: J. Am. Ceramic Soc., 82 (1999) 1915. https://doi.org/10.1111/j.1151-2916.1999.tb02016.x

Cited by

  1. Investigation About Surface Microstructure of Aluminum with Change of Voltage, a Period of Treatment and Density of Electrolyte in Micro-Arc Oxidation Treatment vol.18, pp.6, 2011, https://doi.org/10.4150/KPMI.2011.18.6.575