Application of Bacteria Isolated from Dok-do for Improving Compressive Strength and Crack Remediation of Cement-sand Mortar

독도산 탄산칼슘형성세균에 의한 모르타르 균열보수와 압축강도 증진

  • Park, Sung-Jin (School of Life Sciences, Kyungpook National University) ;
  • Lee, Na-Young (School of Architecture & Architectural Engineering, Kyungpook National University) ;
  • Kim, Wha-Jung (School of Architecture & Architectural Engineering, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences, Kyungpook National University)
  • 박성진 (경북대학교 생명과학부) ;
  • 이나영 (경북대학교 건축토목공학부) ;
  • 김화중 (경북대학교 건축토목공학부) ;
  • 김사열 (경북대학교 생명과학부)
  • Received : 2010.05.04
  • Accepted : 2010.06.07
  • Published : 2010.06.28

Abstract

This study shows an application of microbiologically induced carbonate precipitate for strength improvement and crack remediation of cement-sand mortar. Seven calcium carbonate-forming bacteria (CFB) were isolated from Dok-do and partially identified by DNA sequence analysis of the 16s rRNA gene. Crystal aggregates were apparent around the bacterial colonies grown on an agar medium. These strains showed strain specific $CaCO_3$ precipitation on urea-$CaCl_2$ medium. Among 7 isolates, Arthrobacter nicotinovorans KNUC601, Microbacterium resistens KNUC602, Agrobacterium tumefaciens KNUC603, Exiguobacterium acetylicum KNUC604, and Bacillus thuringiensis KNUC606 showed a repairing of artificial forced cracks in cement-sand mortar. Compressive strength of cement-sand mortar consolidated with Stenotrophomonas maltophilia KNUC605 was increased around 14.07% compared with that of negative control.

본 연구는 탄산칼슘형성세균을 이용하여 시멘트-모래 모르타르의 압축강도증진 및 균열보수의 응용에 연구의 목적이 있다. 독도로부터 분리한 7가지의 탄산칼슘형성세균을 16S rDNA 염기서열을 이용하여 동정했다. 고체배지상의 콜로니 주변부에 형성되는 광물결정을 확인했다. Urea-$CaCl_2$ 배지에서 형성되는 광물의 모양은 종 특이적인 것을 확인했다. Arthrobacter nicotinovorans KNUC601, Microbacterium resistens KNUC602, Agrobacterium tumefaciens KNUC603, Exiguobacterium acetylicum KNUC604, 및 Bacillus thuringiensis KNUC606균주는 인위적으로 만든 모르타르 균열부위를 메우는 것을 확인했다. Stenotrophomonas maltophilia KNUC605가 혼입된 시멘트-모래 모르타르는 음성대조구에 비해 14.7%정도 강도가 증가됐다.

Keywords

References

  1. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
  2. De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
  3. De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  4. Braissant, O., E. Verrecchia, and M. Aragno. 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated?. Naturwissenschaften 89: 366-370. https://doi.org/10.1007/s00114-002-0340-0
  5. Kim, W. J., S.-Y. Ghim, S. J. Park, K. J. Choi, and W. Y. Chun. 2010. Development of smart concrete by microbiologically induced calcite precipitation. J. Kor. Concr. Ins. In press.
  6. Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
  7. Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98. https://doi.org/10.1016/j.cemconcomp.2009.01.001
  8. Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  9. Jonkers, H. M., A. Thijssen, and E. Schlangen. 2008. Ontwikkeling van zelfherstellend beton met behulp van bacterien. Cement 4: 78-81.
  10. Kim, W. J., S. T. Kim, S. J. Park, S. Y. Ghim, and W. Y. Chun. 2009. A study on the development of self-healing smart concrete using microbial biomineralization. J. Kor. Concr. Inst. 21: 501-511. https://doi.org/10.4334/JKCI.2009.21.4.501
  11. Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S.-Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotecnol. 20: 782-788. https://doi.org/10.4014/jmb.0911.11015
  12. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI. Mater. 98: 3-9.
  13. Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
  14. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil. Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  15. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J. Microbiol. Met. 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
  16. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025