곤충살충성 세균 Photorhabdus의 Insecticidal Toxin과 연구동향

Insecticidal Toxin and Research Trends of Photorhabdus, Entomopathogenic Bacteria

  • 장은경 (경북대학교 응용생명과학부) ;
  • 신재호 (경북대학교 응용생명과학부)
  • Jang, Eun-Kyung (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University)
  • 투고 : 2010.03.15
  • 심사 : 2010.03.18
  • 발행 : 2010.06.28

초록

BT toxin is produced by a soil bacterium Bacillus thuringiensis and has long been used as a biological insecticide without any competition. Recently, Photorhabdus, a symbiotic bacterium from entomopathogenic nematodes, family Heterorhabditae, has been researched and discussed as alternatives to B. thuringiensis. Photorhabdus, which lives in the gut of entomopathogenic nematodes, is a highly virulent pathogen of a wide range of insect larvae. When an insect is infected by the nematodes, the bacteria are released into the cadaver, and produce a number of insecticidal toxins. The biological role of the different Photorhabdus toxins in the infection process is still unclear. Photorhabdus toxin complex (Tc) is highly secreted gut-active toxin and has been characterized as a potent three-component (A, B and C) insecticidal protein complex. These components are necessary for full oral activity against insect larvae. The Photorhabdus PirAB binary toxins exhibit a potent injectable activity for Galleria mellonella larvae, and have oral toxicity against mosquitoes and caterpillar pest Plutella xylostella. Other toxin, 'makes caterpillars floppy' (Mcf) showed injectable activity on caterpillars. Recombinant Mcf triggers apoptosis in both insect hemocytes and the midgut epithelium and carries a BH3 domain. In this review, the relationship between the Photorhabdus and the nematode is discussed and recent important insecticidal toxins from Photorhabdus are described.

키워드

참고문헌

  1. Akhurst, R. J. 1986. Xenorhabdus nematophilus subsp. poinarii: Its interaction with insect pathogenic nematodes. Syst. Appl. Microbiol. 8: 142-147. https://doi.org/10.1016/S0723-2020(86)80162-X
  2. Akhurst, R. J. and N. E. Boemare. 1990. Biology and taxonomy of Xenorhabdus. In : p. 75-90. R. Gaugler and H. K. Kaya. (eds.), Entomopathogenic Nematodes in Biological Control, CRC Press, Boca Raton, Florida, USA.
  3. Blackburn, M., E. Golubeva, D. Bowen, and R. H. ffrench-Constant. 1998. A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca) and its histopathological effects on the midgut of Manduca sexta. Appl. Environ. Microbiol. 64: 3036-3041.
  4. Boemare, N. E., C. Laumond, and H. Mauleon. 1996. The nematode-bacterium complexes: biology, life cycle and vertebrate safety. Biocontrol. Sci. Technol. 6: 333-345. https://doi.org/10.1080/09583159631316
  5. Bowen, D. J. and J. C. Ensign. 1998. Purification and characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl. Environ. Microbiol. 64: 3029-3035.
  6. Brillard, J., E. Duchaud, N. Boemare, F. Kunst, and A. Givaudan. 2002. The PhlA hemolysin from the entomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretion family of hemolysins. J. Bacteriol. 184: 3871-3878. https://doi.org/10.1128/JB.184.14.3871-3878.2002
  7. Brugirard-Ricaud, K., E. Duchaud, A. Givaudan, P. A. Girard, F. Kunst. 2005. Site-specific antiphagocytic function of the Photorhabdus luminescens type secretion system during insect colonization. Cell Microbiol. 7: 363-371. https://doi.org/10.1111/j.1462-5822.2004.00466.x
  8. Bucher, G. E. 1960. Potential bacterial pathogens of insects and their characteristics. J. Insect Pathol. 2: 172-195.
  9. Daborn, P. J., N. Waterfield, C. P. Silva, C. P. Y. Au, S. Sharma, and R. H. ffrench-Constant. 2002. A single Photorhabdus gene, makes caterpillars floppy (mcf) allows Escherichia coli to persist within and kill insects. Proc. Natl. Acad. Sci. 99: 10742-10747. https://doi.org/10.1073/pnas.102068099
  10. Dowling, A. J., P. J. Daborn, N. R. Waterfield, P. Wang, C. H. Streuli, and R. H. ffrench-Constant. 2004. The insecticidal toxin Makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell. Microbiol. 6: 345-353. https://doi.org/10.1046/j.1462-5822.2003.00357.x
  11. Duchaud, E., C. Rusniok, L. Frangeul, C. Buchrieser, A. Givaudan, S. Taourit, S. Bocs, C. Boursaux-Eude, M. Chandler, J. F. Charles, E. Dassa, R. Derose, S. Derzelle, G. Freyssinet, S. Gaudriault, C. Medigue, A. Lanois, K. Powell, P. Siguier, R. Vincent, V. Wingate, M. Zouine, P. Glaser, N. Boemare, A. Danchin, and F. Kunst. 2003. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21: 1307-1313. https://doi.org/10.1038/nbt886
  12. Ehlers, R. U. 2001. Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 56: 623-633. https://doi.org/10.1007/s002530100711
  13. ffrench-Constant, R. H. and D. Bowen. 1999. Photorhabdus toxins : novel biological insecticides. Curr. Opin. Microbiol. 2: 284-288. https://doi.org/10.1016/S1369-5274(99)80049-6
  14. ffrench-Constant, R. H., A. Dowling, and N. R. Waterfield. 2007. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon. 49: 436-451. https://doi.org/10.1016/j.toxicon.2006.11.019
  15. ffrench-Constant, R. H., N. Waterfield, V. Burland, N. T. Perna, P. J. Daborn, D. Bowen, and F. R. Blattner. 2000. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl. Environ. Microbiol. 66: 3310-3329. https://doi.org/10.1128/AEM.66.8.3310-3329.2000
  16. ffrench-Constant, R. H., N. Waterfield, P. Daborn, S. Joyce, H. Bennett, C. Au, A. Dowling, S. Boundy, S. Reynolds, and D. Clarke. 2003. Photorhabdus : towards a functional genomic analysis of a symbionts and pathogen. FEMS Microbiol. Rev. 26: 433-456. https://doi.org/10.1111/j.1574-6976.2003.tb00625.x
  17. Fischer-Le Saux, M., V. Viallard, B. Brunel, P. Normand, and N. E. Boemare. 1999. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int. J. Syst. Bacteriol. 49: 1645-1656. https://doi.org/10.1099/00207713-49-4-1645
  18. Forst, S., B. Dowds, N. Boemare, and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp. : Bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72. https://doi.org/10.1146/annurev.micro.51.1.47
  19. Liu, D., S. Burton, T. Glancy, Z. S. Li, R. Hampton, T. Meade, and D.J. Merlo. 2003. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat. Biotechnol. 21: 1307-1313. https://doi.org/10.1038/nbt886
  20. Tounsi, S., M. Blight, S. Jaoua, and A. de Lima Pimenta. 2006. From insects to human hosts: identification of major genomic differences between entomopathogenic strains of Photorhabdus and the emerging human pathogen Photorhabdus asymbiotica. Int. J. Med. Microbiol. 296: 521-530. https://doi.org/10.1016/j.ijmm.2006.06.004
  21. Waterfield, N. R., D. J. Bowen, J. D. Fetherston, R. D. Perry, and R. H. ffrench-Constant. 2001. The tc genes of Photorhabdus: a growing family. Trends Microbiol. 9: 185-191. https://doi.org/10.1016/S0966-842X(01)01978-3
  22. Waterfield, N. R., T. Ciche, and D. Clarke. 2009. Photorhabdus and a Host of Hosts. Annu. Rev. Microbiol. 63: 557-574. https://doi.org/10.1146/annurev.micro.091208.073507
  23. Waterfield, N. R., P. J. Daborn, A. J. Dowling, G. Yang, M. Hares, and R. H. ffrench-Constant. 2003. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiol. Lett. 229: 265-270. https://doi.org/10.1016/S0378-1097(03)00846-2
  24. Waterfield, N. R., P. J. Daborn, and R. H. ffrench-Constant. 2002. Genomic islands in Photorhabdus. Trends. Microbiol. 10: 541-545. https://doi.org/10.1016/S0966-842X(02)02463-0
  25. Waterfield, N., A. Dowling, S. Sharma, P. J. Daborn, U. Potter, and R. H. ffrench-Constant. 2001. Oral toxicity of Photorhabdus luminescens W14 toxin complexes in E. coli. Appl. Environ. Microbiol. 67: 5017-5024. https://doi.org/10.1128/AEM.67.11.5017-5024.2001
  26. Waterfield, N., M. Hares, A. Dowling, and R. ffrench-Constant. 2005. Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell. Microbiol. 7: 373-382. https://doi.org/10.1111/j.1462-5822.2004.00467.x
  27. Waterfield, N., S. G. Kamita, B. D. Hammock, and R. ffrench-Constant. 2005. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol. Lett. 245: 47-52. https://doi.org/10.1016/j.femsle.2005.02.018
  28. Waterfield, N. R., M. Sanchez-Contreras, I. Eleftherianos, A. Dowling, P. Wilkinson. 2008. Rapid virulence annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc. Natl. Acad. Sci. 105: 15967-15972. https://doi.org/10.1073/pnas.0711114105
  29. Wilkinson, P., N. R. Waterfield, L. Crossman, C. Corton, and M. Sanchez-Contreras, I. Vlisidou, A. Barron. 2009. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics. 10: 302. https://doi.org/10.1186/1471-2164-10-302
  30. Yang, G., A. J. Dowling, U. Gerike, R. H. ffrench-Constant, and N. R. Waterfield. 2006. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J. Bacteriol. 188: 2254-2261. https://doi.org/10.1128/JB.188.6.2254-2261.2006