DOI QR코드

DOI QR Code

Physicochemical Characterization and NMR Assignments of Ginsenosides Rb1, Rb2, Rc, and Rd Isolated from Panax ginseng

  • Cho, Jin-Gyeong (Graduate School of Biotechnology and Department of Oriental Medicinal Materials & Processing, Kyung Hee University) ;
  • Lee, Min-Kyung (Graduate School of Biotechnology and Department of Oriental Medicinal Materials & Processing, Kyung Hee University) ;
  • Lee, Jae-Woong (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Park, Hee-Jung (Graduate School of Biotechnology and Department of Oriental Medicinal Materials & Processing, Kyung Hee University) ;
  • Lee, Dae-Young (Graduate School of Biotechnology and Department of Oriental Medicinal Materials & Processing, Kyung Hee University) ;
  • Lee, Youn-Hyung (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Yang, Deok-Chun (Graduate School of Biotechnology and Department of Oriental Medicinal Materials & Processing, Kyung Hee University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Department of Oriental Medicinal Materials & Processing, Kyung Hee University)
  • Received : 2010.02.08
  • Accepted : 2010.03.31
  • Published : 2010.06.30

Abstract

The fresh ginseng roots were extracted with aqueous methanol, and the obtained extracts were partitioned using ethyl acetate, n-butanol, and water, successively. The repeated silica gel and octadecyl silica gel column chromatogaraphy for n-butanol fraction afforded four diol ginseng saponins, ginsenosides $Rb_1$, $Rb_2$, $R_c$, and Rd. The physicochemical, spectroscopic, and chromatographic characteristics of these ginsenosides were measured and compared with those reported in the literature. Some of the peak assignments in previously published $^1H$- and $^{13}C$-nuclear magnetic resonance (NMR) spectra were inaccurate. This study employed two-dimensional NMR experiments, including $^1H-^1H$ correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity, to determine exact peak assignments.

Keywords

References

  1. Jung HK, Lim SK, Park MJ, Bae CS, Yoon KC, Han HJ, Park SH. The protective effect of ginseng saponin against high glucose-induced secretion of insulin-like growth factor (IGF)-I in primary cultured rabbit proximal tubule cells. J Ginseng Res 2009;33:26-32. https://doi.org/10.5142/JGR.2009.33.1.026
  2. Hong HD, Choi SY, Kim YC, Lee YC, Cho CW. Rapid determination of ginsenosides Rb1, Rf, and $Rg_1$ in Korean ginseng using HPLC. J Ginseng Res 2009;33:8-12. https://doi.org/10.5142/JGR.2009.33.1.008
  3. Lee DY, Cho JG, Lee MK, Lee JW, Park HJ, Lee YH, Yang DC, Baek NI. Identification of NMR data for ginsenoside $Rg_1$. J Ginseng Res 2008;32:291-299. https://doi.org/10.5142/JGR.2008.32.4.291
  4. Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside $Rb_1$ by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 2003;25:339-344. https://doi.org/10.1023/A:1022320824000
  5. Du Q, Jerz G, Waibel R, Winterhalter P. Isolation of dammarane saponins from Panax notoginseng by high-speed counter-current chromatography. J Chromatogr A 2003;1008:173-180. https://doi.org/10.1016/S0021-9673(03)00988-9
  6. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponin. VI. The decomposition products of ginsenoside Rb2 in the stomach of rats. Chem Pharm Bull 1991;39:400-404. https://doi.org/10.1248/cpb.39.400
  7. Kim YH, Lee YG, Choi KJ, Uchida K, Suzuki Y. Transglycosylation to ginseng saponins by cyclomaltodextrin glucanotransferases. Biosci Biotechnol Biochem 2001;65:875-883. https://doi.org/10.1271/bbb.65.875
  8. Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 2009;36:721-726. https://doi.org/10.1007/s10295-009-0542-y
  9. Yang CR, Kasai R, Zhou J, Tanaka O. Dammarane saponins of leaves and seeds of Panax notoginseng. Phytochemistry 1983;22:1473-1478. https://doi.org/10.1016/S0031-9422(00)84039-X
  10. Cao XL, Tian Y, Zhang TY, Liu QH, Jia LJ, Ito Y. Separation of dammarane-saponins from notoginseng, root of Panax notoginseng. (Burk.) F. H. Chen, by HSCCC coupled with evaporative light scattering detector. J Liq Chromatogr Relat Technol 2003;26:1579-1591. https://doi.org/10.1081/JLC-120021268
  11. Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 2006;28:1121-1127. https://doi.org/10.1007/s10529-006-9059-x
  12. Liu C, Han J, Duan Y, Huang X, Wang H. Purification and quantification of ginsenoside Rb3 and Rc from crude extracts of caudexes and leaves of Panax notoginseng. Sep Purif Technol 2007;54:198-203. https://doi.org/10.1016/j.seppur.2006.09.004
  13. Ma WG, Mizutani M, Malterud KE, Lu SL, Ducrey B, Tahara S. Saponins from the roots of Panax notoginseng. Phytochemistry 1999;52:1133-1139. https://doi.org/10.1016/S0031-9422(99)00364-7
  14. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 2007;59:589-601. https://doi.org/10.1007/s00280-006-0300-z
  15. Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 2009;36:721-726. https://doi.org/10.1007/s10295-009-0542-y
  16. Teng R, Li H, Chen J, Wang D, He Y, Yang C. Spectral assignments and reference data. Magn Reson Chem 2002;40:483-488. https://doi.org/10.1002/mrc.1033
  17. Oura H, Kumakai A, Shibata S, Takaki K. Chemical constituents of Panax ginseng. In: Panax ginseng: it’s study and progress. Tokyo: Kyoritz Press Ltd., 1981. p. 46-47.
  18. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull 1991;39:2357-2361. https://doi.org/10.1248/cpb.39.2357
  19. Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S. Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro, -$Rb_1$, -$Rb_2$, -Rc and -Rd. Chem Pharm Bull 1974;22:421-428. https://doi.org/10.1248/cpb.22.421
  20. Yahara S, Kaji K, Tanaka O. Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C.A. Meyer. Chem Pharm Bull 1979;27:88-92. https://doi.org/10.1248/cpb.27.88
  21. Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside Rb1 by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 2003;25:339-344. https://doi.org/10.1023/A:1022320824000
  22. Teng R, Ang C, McManus D, Armstrong D, Mau S, Bacic A. Regioselective acylation of ginsenosides by Novozyme 435 to generate molecular diversity. Helv Chim Acta 2004;87:1860-1872. https://doi.org/10.1002/hlca.200490165
  23. Wang H, Tong YX, Ye WC, Zhao SX. Studies on chemical constituents in roots of Polygala tenuifolia. Zhongguo Zhong Yao Za Zhi 2003;28:828-830.

Cited by

  1. Development of a rapid and convenient method to separate eight ginsenosides from Panax ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detection vol.34, pp.10, 2011, https://doi.org/10.1002/jssc.201000932
  2. Malonyl-ginsenoside rb1 in cell suspension culture of Panax japonicus var. repens vol.441, pp.1, 2011, https://doi.org/10.1134/S1607672911060135
  3. Rational development of a selection model for solvent gradients in single-step separation of ginsenosides from Panax ginseng using high-speed counter-current chromatography vol.35, pp.12, 2012, https://doi.org/10.1002/jssc.201200135
  4. The occurrence of gypenoside XVII in suspension cell culture of ginseng Panax japonicus var. repens vol.442, pp.1, 2012, https://doi.org/10.1134/S1607672912010139
  5. Quality Evaluation of Panax ginseng Roots Using a Rapid Resolution LC-QTOF/MS-Based Metabolomics Approach vol.18, pp.12, 2013, https://doi.org/10.3390/molecules181214849
  6. and its application in ginsenoside Rd production vol.31, pp.6, 2013, https://doi.org/10.3109/10242422.2013.857316
  7. Biotransformation of Ginsenoside Rb1 into Rd by the Bacterium Lysobacter panaciterrae vol.49, pp.4, 2013, https://doi.org/10.1007/s10600-013-0740-8
  8. Three New Ginsenosides from the Heat-Processed Roots of Panax ginseng vol.49, pp.5, 2013, https://doi.org/10.1007/s10600-013-0769-8
  9. vol.80, pp.4, 2017, https://doi.org/10.1021/acs.jnatprod.6b00789
  10. An ultra performance liquid chromatography-time-of-flight-mass spectrometric method for fast analysis of ginsenosides in <I>Panax ginseng</I> root : An ultra performance liquid chromatogra vol.29, pp.6, 2011, https://doi.org/10.3724/sp.j.1123.2011.00488
  11. Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis vol.35, pp.1, 2010, https://doi.org/10.5142/jgr.2011.35.1.031
  12. Microarray Analysis of Gene Expression by Ginseng Water Extracts in a Mouse Adrenal Cortex after Immobilization Stress vol.35, pp.1, 2010, https://doi.org/10.5142/jgr.2011.35.1.111
  13. Red Ginseng Saponin Fraction A Isolated from Korean Red Ginseng by Ultrafiltration on the Porcine Coronary Artery vol.35, pp.3, 2010, https://doi.org/10.5142/jgr.2011.35.3.325
  14. Characterizing a Full Spectrum of Physico-Chemical Properties of Ginsenosides Rb1 and Rg1 to Be Proposed as Standard Reference Materials vol.35, pp.4, 2010, https://doi.org/10.5142/jgr.2011.35.4.487
  15. Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats vol.47, pp.1, 2010, https://doi.org/10.1016/j.exger.2011.10.007
  16. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng vol.739, pp.None, 2010, https://doi.org/10.1016/j.aca.2012.06.017
  17. High Frequency of Plant Regeneration through Cyclic Secondary Somatic Embryogenesis in Panax ginseng vol.36, pp.4, 2010, https://doi.org/10.5142/jgr.2012.36.4.442
  18. Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials vol.37, pp.1, 2010, https://doi.org/10.5142/jgr.2013.37.124
  19. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway vol.702, pp.1, 2010, https://doi.org/10.1016/j.ejphar.2013.01.048
  20. Comparative Analysis of Metabolites in Roots of Panax ginseng Obtained from Different Sowing Methods vol.22, pp.1, 2010, https://doi.org/10.7783/kjmcs.2014.22.1.17
  21. The mechanism of acid-catalyzed conversion of ginsenoside Rf and two new 25-hydroxylated ginsenosides vol.10, pp.None, 2010, https://doi.org/10.1016/j.phytol.2014.09.009
  22. A Universal Quantitative 1H Nuclear Magnetic Resonance (qNMR) Method for Assessing the Purity of Dammarane‐type Ginsenosides vol.26, pp.1, 2015, https://doi.org/10.1002/pca.2527
  23. Two new triterpenoid saponins from ginseng medicinal fungal substance vol.18, pp.9, 2010, https://doi.org/10.1080/10286020.2016.1169274
  24. Wound Healing and the Use of Medicinal Plants vol.2019, pp.None, 2010, https://doi.org/10.1155/2019/2684108
  25. Gypenoside LXXV Promotes Cutaneous Wound Healing In Vivo by Enhancing Connective Tissue Growth Factor Levels Via the Glucocorticoid Receptor Pathway vol.24, pp.8, 2010, https://doi.org/10.3390/molecules24081595
  26. Ginseng Berry Prevents Alcohol-Induced Liver Damage by Improving the Anti-Inflammatory System Damage in Mice and Quality Control of Active Compounds vol.20, pp.14, 2010, https://doi.org/10.3390/ijms20143522
  27. UPLC-QTOF-MS-guided isolation of anti-COPD ginsenosides from wild ginseng vol.9, pp.66, 2010, https://doi.org/10.1039/c9ra06635g
  28. Anti-inflammatory and Immunosuppressive Effects of Panax notoginseng vol.25, pp.4, 2010, https://doi.org/10.20307/nps.2019.25.4.317
  29. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh 2 as an enhancer of skeletal and cardiac muscle regeneration vol.10, pp.None, 2010, https://doi.org/10.1038/s41598-020-61491-4