DOI QR코드

DOI QR Code

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames

중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능

  • 한상환 (양대학교 건축공학부) ;
  • 박영미 (한양대학교 건축환경공학과 BK21) ;
  • 유연호 (한양대학교 건축환경공학과)
  • Received : 2009.12.01
  • Accepted : 2010.03.11
  • Published : 2010.06.30

Abstract

The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

본 연구에서는 기둥을 관통하는 슬래브 하부 철근이 중력하중만으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능에 미치는 영향을 평가하였다. 중 약진 지역에서 건물은 흔히 중력하중만을 고려하여 설계되고 있다. 본 연구에서는 중력하중으로 설계된 PT 플랫플레이트 골조의 내진성능에 집중되고 있다. 이를 위하여, 3,6,9층 PT 플랫플레이트 골조는 중력하중만으로 설계하였다. 철근콘크리트 플랫플레이트 골조에서는 취성적인 붕괴를 예방하기 위해서는 기둥을 관통하는 연속된 슬래브 하부철근이 위치하여야 한다. 그러나 PT 플랫플레이트 골조에서는 슬래브 하부 철근에 대해 ACI 318-05에서는 특별한 언급이 없기 때문에 흔히 생략하고 있다. 본 연구는 대산건물을 비선형 시간이력해석 으로 골조 모델의 내진성능에 대해 평가한다. 비선형 시간이력해석은 6개의 지진과 2개의 다른 위험수준 (475, 2475년 주기), 3개의 다른 지역 (보스턴, 시애틀, LA)을 사용하였다. 해석모델은 PT슬래브-기둥 접합부의 파괴 메카니즘과 비선형 거동을 살펴보기 위해 개발되었다. 본 연구는 중력하중으로 설계된 PT 플랫플레이트 골조가 몇몇 내진저항 능력을 보여주고 있다. 또한, PT 플랫플레이트 골조의 내진성능은 기둥을 관통하는 슬래브 하부철근이 위치할 때 눈에 띄게 향상되었다.

Keywords

References

  1. Han, S. W., Kwon, O. S., and Lee, L. H., “Evaluation of the seismic performance of a three-story ordinary momentresisting concrete frame,” Earthquake Engineering Structural Dynamics, Vol. 33, 669-685, 2004. https://doi.org/10.1002/eqe.367
  2. Bracci, J. M., Reinhorn, A. R., and Mander, J., “Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system,” ACI Structural Journal, Vol. 92, No. 5, 597-609, 1995.
  3. ACI Committee 318, Building Code Requirements for Reinforced Concrete (ACI 318-08), American Concrete Institute, Detroit, 465pp, 2008.
  4. Han, S. W., Kee, S.-H., Kang, T. H.-K., Ha, S.-S., Wallace, J. W., and Lee, L.-H., “Cyclic behaviour of interior posttensioned flat plate connections,” Magazine of Concrete Research, Vol. 58, No. 10, 699-711, 2006. https://doi.org/10.1680/macr.2006.58.10.699
  5. Han, S. W., Kee, S.-H., Park, Y.-M., Lee, L.-H., and Kang, T. H.-K., “Hysteretic behavior of exterior post-tensioned flat plate connections,” Engineering Structures, Elsevier, Vol. 28, No. 14, 1983-1996, 2006. https://doi.org/10.1016/j.engstruct.2006.03.029
  6. Han, S. W., Kee, S.-H., Ha, S.-S., and Wallace, J. W., “Effects of bottom reinforcement on hysteretic behavior of post-tensioned flat plate connections,” Jounal of Structural Engineering, ASCE, Vol. 135, No. 9, 1019-1033, 2009. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:9(1019)
  7. Joint ACI-ASCE committee 352. Recommendation for design of slab–column connections in monolithic reinforced concrete structures (ACI 352.1R-89). Farmington Hills(MI), American Concrete Institute; 26pp, 1997.
  8. 한상환, 유종혁, “포스트텐션 플랫플레이트 골조의 해석모델,” 한국지진공학회 논문집 제11권 6호, 23-32, 2007. https://doi.org/10.5000/EESK.2007.11.6.023
  9. Banchik, C. A., “Effective beam width coefficients for equivalent frame analysis of flat-plate structures,” ME thesis, Univ. of California at Berkeley, Cali. 1987
  10. Qaisrani, A. N., Interior Post-Tensioned flat-Plate connections subjected to vertical and biaxial lateral loading. Ph.D. Thesis, CA: Department of Civil Engineering, Univ. of California at Berkeley; 1993.
  11. OpenSees Development Team. OpenSees: Open System for Earthquake Engineering Simulations, Version 1.7.3. Berkeley (CA); 465pp, 2006.
  12. Hognestad E., Hanson, N. W., and McHenry, D., “Concrete stress distribution in ultimate strength design,” ACI Journal, Vol. 52, No. 4, 455-480, 1955.
  13. MIDAS IT. MIDAS/GENw user’s manual. Seoul, Korea, 436, 2008.
  14. Somerville, P., N. Smith, S. Puntamurthula, and J. Sun, Development of ground motion time histories for phase 2 of the FEMA/SAC steel project. SAC Background Document, Report No. SAC/BD-97/04, SAC Joint Venture, 555 University Ave., Sacramento, Calif. 44pp, 1997.
  15. ASCE, Seismic Rehabilitation of Existing Buildings(ASCE/SEI 41-06), Structural Engineering Institute, 411,2006.
  16. Yun, S.-Y., Performance prediction and evaluation of low ductility steel moment frames for seismic loads. Ph. D. thesis, University of Illinois at Urbana-Champaign; 2000.