DOI QR코드

DOI QR Code

Positron Annihilation Lifetime Study on the Proton-Irradiation BaSrFBr : Eu Film

양전자 소멸 수명 측정에 의한 양성자 조사된 BaSrFBr : Eu 박막 특성

  • 임유석 (한남대학교 이과대학 물리학과) ;
  • 이종용 (한남대학교 이과대학 물리학과)
  • Received : 2010.05.19
  • Accepted : 2010.06.07
  • Published : 2010.06.27

Abstract

Positron annihilation lifetime spectroscopy is applied to BaSrFBr : Eu film which is used for the phosphore layer, and afterwards the reliability and self-consistency of source corrections in the positron lifetime spectroscopy is investigated using a $^{22}Na$ positron emitter covered by thin foils. The positron lifetime showed no significant change through the various proton irradiation energies. It is unusual that the measurements of the defects indicate that most of the defects were likely to have been generated by X-ray radiation. This may have resulted from the Bragg peaks of the proton characteristics. The Bragg peak does not affect the defect signals enough to distinguish the lifetimes and intensities in a material that is includes multi-grains. The lifetime ($\tau_1$) associated with positron annihilations in the Ba, Br, and Eu of the sample was about 250 ps, and due to the annihilations at F-centers or defects from the irradiated protons in sample, the lifetime ($\tau_2$) was about 500 ps.

Keywords

References

  1. J. Miyahara, Science and Technology of Japan, 26, 28(1985).
  2. Y. Amemiya and J. Miyahara, Nature(London), 336, 89(1988). https://doi.org/10.1038/336089a0
  3. M. Sonoda, M. Takano, J. Miyahara and H. Kato,Radiology, 148, 833 (1983). https://doi.org/10.1148/radiology.148.3.6878707
  4. C. Y. Lee, C. G. Kim, K. Y. Song and J. H. Kim, Kor. J. Mater. Res., 15(6), 370 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.6.370
  5. C. Y. Lee, S. H. Bae, J. H. Kim and J. H. Kwon, Kor. J. Mater. Res., 16(7), 455 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.7.455
  6. C. Y. Lee, J. H. Kwon, H. H. Kim and J. M. Jeong. J. Kor. Phys. Soc., 51, 1172 (2007). https://doi.org/10.3938/jkps.51.1172
  7. C. Dietze, Th. Hangleiter, P. Willems, P. J. R. Lebians, L.Struye and J. M. Spaeth, J. Appl. Phys. 80, 1074 (1996). https://doi.org/10.1063/1.362843
  8. P. Hackenschmied, G. Zeitler, M. Batentschuk, E. Helland W. Knupfer, Nucl. Instru. Meth. Phys. Res. B, 191,163 (2002). https://doi.org/10.1016/S0168-583X(02)00544-X
  9. B. Mantl and W. Triftshauser, Appl. Phys., 5, 177 (1974). https://doi.org/10.1007/BF00928232
  10. C. Y. Lee, W. N. Kang, Y. Nagai, K. Inoue and M.Hasegawa, J. Kor. Vacuum Soc., 15(2), 370 (2005).
  11. I. Prochazka, Materials Structure, 8, 55 (2001).
  12. J. G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim and J. H.Kwon, Kor. J. Mater. Res., 18(8), 427 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.8.427
  13. T. Kurobori, M. Liu and Y. Hirose, Nucl. Instru. Meth. Phys. Res. B, 191, 306 (2002). https://doi.org/10.1016/S0168-583X(02)00581-5
  14. T. Matsumura, T. Matsubara, T. Hiraiwa, K. Horie, M.Kuze, K. Miyabayashi, A. Okamura, T. Sawada, S.Shimizu, T. Shinkawa, T. Tsunemi and M. Yoso, Nucl. Instru. Meth. Phys. Res. Sec. A, 603, 301 (2009). https://doi.org/10.1016/j.nima.2009.02.022
  15. T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487(1987). https://doi.org/10.1007/BF01113755