LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS

SEI-QWON OH AND EUN-HEE CHO

ABSTRACT. It gives a method to obtain a natural Lie bialgebra from a Poisson bialgebra by an algebraic point of view. Let \mathfrak{g} be a coboundary Lie bialgebra associated to a Poission Lie group G. As an application, we obtain a Lie bialgebra from a sub-Poisson bialgebra of the restricted dual of the universal enveloping algebra $U(\mathfrak{g})$.

Introduction

Assume throughout that G denotes a connected and simply connected Lie group with Lie algebra \mathfrak{g} , $\mathcal{O}(G)$ the coordinate ring of G and $U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} .

If G is a Poisson Lie group, then $\mathcal{O}(G)$ is a Poisson Hopf algebra and \mathfrak{g} becomes a Lie bialgebra. Conversely, if \mathfrak{g} has a Lie bialgebra structure, then G becomes a Poisson Lie group by [2, Chapter 1]. On the other hand, if $U(\mathfrak{g})$ has a co-Poisson Hopf structure with co-Poisson bracket δ , then $(\mathfrak{g}, \delta|_{\mathfrak{g}})$ becomes a Lie bialgebra. Conversely if (\mathfrak{g}, δ) is a Lie bialgebra, then the cobracket δ extends uniquely to a Poisson co-bracket on $U(\mathfrak{g})$, which makes $U(\mathfrak{g})$ into a co-Poisson Hopf algebra (see [2, Proposition 6.2.3]). Moreover, the coordinate ring $\mathcal{O}(G)$ is isomorphic as a Hopf algebra to the restricted dual $U(\mathfrak{g})^\circ$ of $U(\mathfrak{g})$ and it is sometimes more convenient to work on $U(\mathfrak{g})^\circ$ than to do on $\mathcal{O}(G)$. For instance, Hodges and his colleagues worked on restricted duals to obtain mathematical properties of a quantum group in [3] and [4]. Hence it makes sense mathematically to study a relationship between Lie bialgebras and restricted duals of their enveloping algebras.

Let $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$ be a Poisson bialgebra and $\mathfrak{m} = \ker \epsilon$. In 1.5, we prove by an algebraic point of view that the pair $((\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2)$ is a natural Lie bialgebra obtained from $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$.

Let \mathfrak{g} be a coboundary Lie bialgebra. The restricted dual A of $U(\mathfrak{g})$ is the vector space spanned by all coordinate functions $c_{f,v}^M$, where M is a finite

O2010 The Korean Mathematical Society

Received January 31, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 17B62, 17B63, 16W30.

Key words and phrases. Lie bialgebra, Poisson bialgebra.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government, KRF-2007-314-C00007.

dimensional left $U(\mathfrak{g})$ -module and $f \in M^*, v \in M$. Here we give an explicit Poisson bracket on A that is the Sklyanin Poisson bracket. Let B be a sub-Poisson bialgebra of the restricted dual A. Then, as an application of 1.5, we obtain a Lie bialgebra $((\mathfrak{m}_B/\mathfrak{m}_B^2)^*, \mathfrak{m}_B/\mathfrak{m}_B^2)$ arising from B, where \mathfrak{m}_B is the kernel of the counit in B.

Assume throughout that \mathbf{k} denotes a field of characteristic zero, all vector spaces considered here are over \mathbf{k} and if A is a bialgebra with comultiplication Δ , then we use Sweedler's notation

$$\Delta(a) = \sum_{(a)} a' \otimes a'', \quad a \in A.$$

Recall that a Poisson algebra A is a **k**-algebra with **k**-bilinear map $\{\cdot, \cdot\}$, called a Poisson bracket, such that

- (a) $(A, \{\cdot, \cdot\})$ is a Lie algebra over **k**.
- (b) $\{ab,c\} = a\{b,c\} + \{a,c\}b$ for all $a,b,c \in A$. (Leibniz rule)

1. Lie bialgebra arising from Poisson bialgebra

Definition 1.1. A Poisson algebra A with Poisson bracket $\{\cdot, \cdot\}$ is said to be a Poisson bialgebra if A is also a bialgebra $(A, \iota, m, \epsilon, \Delta)$ over \mathbf{k} such that

(1)
$$\Delta(\{a,b\}) = \{\Delta(a), \Delta(b)\}_{A \otimes A}$$

for all $a, b \in A$, where the Poisson bracket $\{\cdot, \cdot\}_{A \otimes A}$ on $A \otimes A$ is defined by

$$\{a \otimes b, c \otimes d\}_{A \otimes A} = \{a, c\} \otimes bd + ac \otimes \{b, d\}$$

for all $a, b, c, d \in A$.

A Poisson bialgebra A is often denoted by $A = (A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$. If a Poisson bialgebra A is a Hopf algebra, then A is called a Poisson Hopf algebra (see [2, 6.2.1] and [1, III.5.3]). Note, by (1), that

(2)
$$\Delta(\{a,b\}) = \sum a'b' \otimes \{a'',b''\} + \{a',b'\} \otimes a''b''$$

for all elements a, b of a Poisson bialgebra A.

Lemma 1.2. If $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$ is a Poisson bialgebra, then $\epsilon(\{a, b\}) = 0$ for all $a, b \in A$.

Proof. By (2), we have that

$$\begin{aligned} \{a,b\} &= m \circ (\epsilon \otimes \mathrm{id}_A) \circ \Delta(\{a,b\}) \\ &= m \circ (\epsilon \otimes \mathrm{id}_A) (\sum \{a',b'\} \otimes a''b'' + a'b' \otimes \{a'',b''\}) \\ &= \sum \epsilon(\{a',b'\})a''b'' + \sum \epsilon(a'b')\{a'',b''\} \\ &= \sum \epsilon(\{a',b'\})a''b'' + \{a,b\} \end{aligned}$$

for $a, b \in A$ and thus we have $\sum \epsilon(\{a', b'\})a''b'' = 0$. Hence

$$0 = \epsilon(\sum \epsilon(\{a', b'\})a''b'') = \sum \epsilon(\{a', b'\})\epsilon(a'')\epsilon(b'') = \epsilon(\{a, b\}),$$

as claimed.

Corollary 1.3. In a Poisson bialgebra $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$, set ker $\epsilon = \mathfrak{m}$. Then $\mathfrak{m}/\mathfrak{m}^2$ is a Lie algebra with Lie bracket

(3)
$$[a + \mathfrak{m}^2, b + \mathfrak{m}^2] = \{a, b\} + \mathfrak{m}^2, \ a, b \in \mathfrak{m}.$$

Proof. The Lie bracket (3) is well-defined by Lemma 1.2. Clearly $(\mathfrak{m}/\mathfrak{m}^2, [\cdot, \cdot])$ is a Lie algebra.

1.4. Let $(A, \iota, m, \epsilon, \Delta)$ be a bialgebra and set

(

 $A^{\circ} = \{ f \in A^* \mid f(I) = 0 \text{ for some ideal } I \text{ of } A \text{ such that } \dim(A/I) < \infty \}.$

Then A° , called the restricted dual of A, becomes a bialgebra with bialgebra structure: For $f, g \in A^{\circ}$ and $a, b \in A$,

$$fg)(a) = \sum f(a')g(a''), \quad \Delta(f)(a \otimes b) = f(ab).$$

Denote

$$P_{\epsilon}(A^{\circ}) = \{ f \in A^{\circ} \mid f(ab) = \epsilon(a)f(b) + f(a)\epsilon(b), \quad \forall a, b \in A \}.$$

That is, $P_{\epsilon}(A^{\circ}) = \{f \in A^{\circ} \mid \Delta(f) = \epsilon \otimes f + f \otimes \epsilon\}$. It is well-known that $P_{\epsilon}(A^{\circ})$ is a Lie algebra with Lie bracket

$$[f,g] = fg - gf$$

for all $f, g \in P_{\epsilon}(A^{\circ})$.

Denote $\mathfrak{m} = \ker \epsilon$ and let $i: \mathfrak{m} \longrightarrow A$ be the canonical injection. Then i^* is a surjection of A^* onto \mathfrak{m}^* . Let $f \in \ker i^*$. Then $f(a - \epsilon(a)1) = 0$ for all $a \in A$ since $f(\mathfrak{m}) = 0$ and $a - \epsilon(a)1 \in \mathfrak{m}$. Thus $f = f(1)\epsilon$ for $f \in \ker i^*$. It follows that $\ker i^* = \mathbf{k}\epsilon$. Given $f, g \in \mathfrak{m}^*$, choose representatives $f' = i^{*-1}(f), g' = i^{*-1}(g)$. If $f'_1 = i^{*-1}(f), g'_1 = i^{*-1}(g)$, then $f'_1 = f' + \alpha\epsilon, g'_1 = g' + \beta\epsilon$ for some $\alpha, \beta \in \mathbf{k}$. Thus

$$f'_{1}g'_{1} - g'_{1}f'_{1} = (f' + \alpha\epsilon)(g' + \beta\epsilon) - (g' + \beta\epsilon)(f' + \alpha\epsilon)$$

= $(f'g' + \beta f' + \alpha g' + \alpha\beta\epsilon) - (g'f' + \beta f' + \alpha g' + \alpha\beta\epsilon)$
= $f'g' - g'f'$

since ϵ is the multiplicative identity in A^* . Hence $[f,g] = i^*(f'g' - g'f')$ is independent of representatives and defines a Lie bracket on \mathfrak{m}^* . Identifying $\{f \in \mathfrak{m}^* \mid f(\mathfrak{m}^2) = 0\}$ with $(\mathfrak{m}/\mathfrak{m}^2)^*$, $(\mathfrak{m}/\mathfrak{m}^2)^*$ is a Lie subalgebra of \mathfrak{m}^* by [8, 2.1.2].

Lemma. The linear map

$$i^*|_{P_{\epsilon}(A^{\circ})}: P_{\epsilon}(A^{\circ}) \longrightarrow (\mathfrak{m}/\mathfrak{m}^2)^*, \quad f \mapsto i^*|_{P_{\epsilon}(A^{\circ})}(f) = f|_{\mathfrak{m}}$$

is a Lie isomorphism.

Proof. Note that $A = \mathbf{k} \mathbf{1}_A \oplus \mathbf{m}$ and if $f \in P_{\epsilon}(A^{\circ})$, then $f(\mathbf{m}^2) = 0$. Hence $i^*|_{P_{\epsilon}(A^{\circ})}$ is well-defined. If $f \in \ker(i^*|_{P_{\epsilon}(A^{\circ})})$, then

$$f(\alpha 1_A + a) = \alpha f(1_A) + f(a) = 0$$

for all $\alpha \in \mathbf{k}$ and $a \in \mathfrak{m}$. It follows that $i^*|_{P_{\epsilon}(A^{\circ})}$ is injective. If $f \in \mathfrak{m}^*$ such that $f(\mathfrak{m}^2) = 0$, then f is extended to A, denoted by f', by setting

$$f'(\mathbf{k}1_A) = 0, \quad f'|_{\mathfrak{m}} = f.$$

Then, for any $\alpha, \beta \in \mathbf{k}$ and $a, b \in \mathfrak{m}$,

$$f'((\alpha 1_A + a)(\beta 1_A + b)) = f(\alpha b) + f(\beta a) = \epsilon(\alpha 1_A + a)f'(\beta 1_A + b) + f'(\alpha 1_A + a)\epsilon(\beta 1_A + b).$$

Hence $f' \in P_{\epsilon}(A^{\circ})$ and thus $i^*|_{P_{\epsilon}(A^{\circ})}$ is surjective. Now $i^*|_{P_{\epsilon}(A^{\circ})}$ is a Lie isomorphism by the definition of Lie brackets.

1.5. Let us recall the definition for Lie bialgebra in [2, 1.3] and [9, 2.1.1]. A Lie bialgebra is a pair (\mathfrak{g}, ψ) , where \mathfrak{g} is a Lie algebra and $\psi : \mathfrak{g} \longrightarrow \mathfrak{g} \wedge \mathfrak{g}$, called cobracket, satisfying the following conditions:

(a) The dual map $\psi^* : \mathfrak{g}^* \wedge \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ makes \mathfrak{g}^* a Lie algebra.

(b) The cobracket $\psi : \mathfrak{g} \longrightarrow \mathfrak{g} \wedge \mathfrak{g}$ is a 1-cocycle on \mathfrak{g} with respect to the \mathfrak{g} -module structure on $\mathfrak{g} \wedge \mathfrak{g}$ given by the adjoint action. In other words, we have that for any $a, b \in \mathfrak{g}$,

$$\psi([a,b]) = a \cdot \psi(b) - b \cdot \psi(a),$$

where

$$a \cdot (b \otimes c) = [a \otimes 1 + 1 \otimes a, b \otimes c] = [a, b] \otimes c + b \otimes [a, c].$$

In a Lie bialgebra (\mathfrak{g}, ψ) , a Lie ideal \mathfrak{b} of \mathfrak{g} is said to be a Lie bialgebra ideal if $\psi(\mathfrak{b}) \subseteq \mathfrak{g} \otimes \mathfrak{b} + \mathfrak{b} \otimes \mathfrak{g}$. A Lie homomorphism $\varphi : (\mathfrak{g}, \psi) \longrightarrow (\mathfrak{g}', \psi')$ is said to be a Lie bialgebra homomorphism if $(\varphi \otimes \varphi) \circ \psi = \psi' \circ \varphi$. Note that if \mathfrak{b} is a Lie bialgebra ideal of (\mathfrak{g}, ψ) , then $(\mathfrak{g}/\mathfrak{b}, \overline{\psi})$ is also a Lie bialgebra. A Lie bialgebra (\mathfrak{g}, ψ) is frequently denoted by $(\mathfrak{g}, \mathfrak{g}^*)$.

Theorem. Let $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$ be a Poisson bialgebra and let $\mathfrak{m} = \ker \epsilon$. Then $((\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2)$ is a Lie bialgebra.

Proof. We will show that the pair $((\mathfrak{m}/\mathfrak{m}^2)^*, \psi)$ is a Lie bialgebra, where $\psi : (\mathfrak{m}/\mathfrak{m}^2)^* \longrightarrow (\mathfrak{m}/\mathfrak{m}^2)^* \land (\mathfrak{m}/\mathfrak{m}^2)^*$ is defined by

(4)
$$\psi(f)(z_1 \otimes z_2) = f([z_1, z_2])$$

for all $z_1, z_2 \in \mathfrak{m}/\mathfrak{m}^2$. It is enough to prove that ψ is a 1-cocycle on $(\mathfrak{m}/\mathfrak{m}^2)^*$. The natural **k**-bilinear form $\langle \cdot, \cdot \rangle$ defined by

$$\langle \cdot, \cdot \rangle : (\mathfrak{m}/\mathfrak{m}^2)^* \times \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \mathbf{k}, \quad \langle f, a + \mathfrak{m}^2 \rangle = f(a + \mathfrak{m}^2)$$

is a nondegenerate **k**-bilinear form. Identifying $(\mathfrak{m}/\mathfrak{m}^2)^*$ to $P_{\epsilon}(A^{\circ})$ by 1.4, we have that, for $f, g \in (\mathfrak{m}/\mathfrak{m}^2)^*$ and $a, b \in \mathfrak{m}$,

$$\begin{split} \langle \psi([f,g]), (a+\mathfrak{m}^2) \otimes (b+\mathfrak{m}^2) \rangle &= \langle [f,g], \{a,b\} + \mathfrak{m}^2 \rangle \\ &= (fg)(\{a,b\}) - (gf)(\{a,b\}) \\ &= \sum f(a'b')g(\{a'',b''\}) + f(\{a',b'\})g(a''b'') \\ &- g(a'b')f(\{a'',b''\}) - g(\{a',b'\})f(a''b'') \\ &= \sum (\epsilon(a')f(b') + f(a')\epsilon(b'))g(\{a'',b''\}) \\ &+ f(\{a',b'\})(\epsilon(a'')g(b'') + g(a'')\epsilon(b'')) \\ &- (\epsilon(a')g(b') + g(a')\epsilon(b'))f(\{a'',b''\}) \\ &- g(\{a',b'\})(\epsilon(a'')f(b'') + f(a'')\epsilon(b'')) \\ &= \sum f(b')g(\{a,b''\}) + f(a')g(\{a'',b\}) \\ &+ f(\{a',b\})g(a'') + f(\{a,b'\})g(b'') \\ &- g(\{a,b'\})f(b'') - g(\{a',b\})f(a'') \end{split}$$

by (2). Let

$$\psi(f) = \sum f_1 \otimes f_2, \quad \psi(g) = \sum g_1 \otimes g_2.$$

Then, by (4), we have

$$\begin{aligned} f(\{a,b\}) &= \langle \psi(f), (a+\mathfrak{m}^2) \otimes (b+\mathfrak{m}^2) \rangle = \sum f_1(a) f_2(b), \\ g(\{a,b\}) &= \langle \psi(g), (a+\mathfrak{m}^2) \otimes (b+\mathfrak{m}^2) \rangle = \sum g_1(a) g_2(b) \end{aligned}$$

for all $a, b \in \mathfrak{m}$. Hence

$$\begin{split} &\langle f \cdot \psi(g) - g \cdot \psi(f), (a + \mathfrak{m}^2) \otimes (b + \mathfrak{m}^2) \rangle \\ &= \langle \sum [f, g_1] \otimes g_2 + g_1 \otimes [f, g_2] - [g, f_1] \otimes f_2 - f_1 \otimes [g, f_2], \\ &(a + \mathfrak{m}^2) \otimes (b + \mathfrak{m}^2) \rangle \\ &= \sum f(a')g_1(a'')g_2(b) - g_1(a')f(a'')g_2(b) \\ &+ g_1(a)f(b')g_2(b'') - g_1(a)g_2(b')f(b'') \\ &- g(a')f_1(a'')f_2(b) + f_1(a')g(a'')f_2(b) \\ &- f_1(a)g(b')f_2(b'') + f_1(a)f_2(b')g(b'') \\ &= \sum f(a')g(\{a'', b\}) - g(\{a', b\})f(a'') \\ &+ f(b')g(\{a, b''\}) - g(\{a, b'\})f(b'') \\ &- g(a')f(\{a'', b\}) + f(\{a', b\})g(a'') \\ &- g(b')f(\{a, b''\}) + f(\{a, b'\})g(b''). \end{split}$$

Thus we have $\psi([f,g]) = f \cdot \psi(g) - g \cdot \psi(f)$ for all $f, g \in (\mathfrak{m}/\mathfrak{m}^2)^*$ and so ψ is a 1-cocycle as claimed. \Box

Example 1.6. Let q be an indeterminate over \mathbf{k} . By [1, I.2.2], the coordinate ring of quantum $n \times n$ -matrices, denoted by $\mathcal{O}_q(M_n(\mathbf{k}))$, is the $\mathbf{k}[q^{\pm 1}]$ -algebra generated by $x_{ij}, 1 \leq i, j \leq n$, subject to the relations

$$x_{ij}x_{rs} = \begin{cases} qx_{rs}x_{ij} & i = r \text{ and } j < s, \\ qx_{rs}x_{ij} & i < r \text{ and } j = s, \\ x_{rs}x_{ij} & i < r \text{ and } j > s, \\ x_{rs}x_{ij} + (q - q^{-1})x_{is}x_{rj} & i < r \text{ and } j < s. \end{cases}$$

Thus

$$x_{ij}x_{rs} - x_{rs}x_{ij} = \begin{cases} (q-1)x_{rs}x_{ij} & i = r \text{ and } j < s, \\ (q-1)x_{rs}x_{ij} & i < r \text{ and } j = s, \\ 0 & i < r \text{ and } j > s, \\ q^{-1}(q-1)(q+1)x_{is}x_{rj} & i < r \text{ and } j < s. \end{cases}$$

Hence $\mathcal{O}_q(M_n(\mathbf{k}))/\langle q-1 \rangle$ is the commutative **k**-algebra $\mathbf{k}[\overline{x}_{ij} \mid i, j = 1, ..., n]$. Moreover $\mathcal{O}_q(M_n(\mathbf{k}))/\langle q-1 \rangle$ is a Poisson algebra with Poisson bracket

$$\{\overline{x}_{ij}, \overline{x}_{rs}\} = \overline{(q-1)^{-1}(x_{ij}x_{rs} - x_{rs}x_{ij})}$$

by [1, III.5.4]. More precisely, we have that

$$\{\overline{x}_{ij}, \overline{x}_{rs}\} = \begin{cases} \overline{x}_{rs} \overline{x}_{ij} & i = r \text{ and } j < s, \\ \overline{x}_{rs} \overline{x}_{ij} & i < r \text{ and } j = s, \\ 0 & i < r \text{ and } j > s, \\ 2\overline{x}_{is} \overline{x}_{rj} & i < r \text{ and } j < s. \end{cases}$$

The coordinate ring of $n \times n$ -matrices is the commutative **k**-algebra

$$\mathbf{k}[x_{ij} \mid i, j = 1, \dots, n],$$

denoted by $\mathcal{O}(M_n(\mathbf{k}))$, which is a bialgebra with the coalgebra structure

$$\epsilon(x_{ij}) = \delta_{ij}, \quad \Delta(x_{ij}) = \sum_{k=1}^n x_{ik} \otimes x_{kj}.$$

The algebra $\mathcal{O}(M_n(\mathbf{k}))$ is also a Poisson algebra with Poisson bracket

(5)
$$\{x_{ij}, x_{rs}\} = \begin{cases} x_{ij}x_{rs} & i = r \text{ and } j < s, \\ x_{ij}x_{rs} & i < r \text{ and } j = s, \\ 0 & i < r \text{ and } j > s, \\ 2x_{is}x_{rj} & i < r \text{ and } j < s \end{cases}$$

by the above paragraph. Moreover $\mathcal{O}(M_n(\mathbf{k}))$ is a Poisson bialgebra since

$$\Delta(\{x_{ij}, x_{rs}\}) = \{\Delta(x_{ij}), \Delta(x_{rs})\}$$

for all i, j, r, s, any Poisson bracket satisfies the Leibniz rule and Δ is an algebra homomorphism.

In $\mathfrak{m}/\mathfrak{m}^2$, set

$$e_{ij} = x_{ij} + \mathfrak{m}^2, \ e_{kk} = (x_{kk} - 1) + \mathfrak{m}^2, \ i \neq j, \ 1 \le k \le n.$$

Then e_{ij} , i, j = 1, ..., n, form a **k**-basis of $\mathfrak{m}/\mathfrak{m}^2$ and satisfy

$$\begin{split} & [e_{ii}, e_{is}] = e_{is} & i < s, \\ & [e_{ii}, e_{is}] = -e_{is} & i > s, \\ & [e_{ij}, e_{is}] = 0 & i \neq j, i \neq s, \\ & [e_{ij}, e_{is}] = 0 & i \neq j, i \neq s, \\ & [e_{ii}, e_{ri}] = e_{ri} & i < r, \\ & [e_{ii}, e_{ri}] = -e_{ri} & i > r, \\ & [e_{ij}, e_{rj}] = 0 & i \neq j, r \neq j, \\ & [e_{ij}, e_{rs}] = 0 & i < r, j < s, i \neq s, r \neq j, \\ & [e_{ij}, e_{rs}] = 2e_{rj} & i < r, j < s, i = s, r \neq j, \\ & [e_{ij}, e_{rs}] = 2e_{is} & i < r, j < s, i \neq s, r = j, \\ & [e_{ij}, e_{rs}] = 0 & i < r, j > s, \\ & [e_{ii}, e_{rr}] = 0 & i \neq r \end{split}$$

by (5). The dual $(\mathfrak{m}/\mathfrak{m}^2)^*$ has the dual basis e_{ij}^* for e_{ij} , $i, j = 1, \ldots, n$, satisfying

$$[e_{ij}^*, e_{rs}^*] = \delta_{jr} e_{is}^* - \delta_{si} e_{rj}^*$$

for all i, j, r, s. That is, $(\mathfrak{m}/\mathfrak{m}^2)^*$ is isomorphic to the general linear Lie algebra $\mathfrak{gl}_n(\mathbf{k})$. Moreover the pair $((\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2)$ is a Lie bialgebra by 1.5. Now the cobracket $\psi : (\mathfrak{m}/\mathfrak{m}^2)^* \longrightarrow (\mathfrak{m}/\mathfrak{m}^2)^* \land (\mathfrak{m}/\mathfrak{m}^2)^*$ is given by

$$\begin{split} \psi(e_{ii}^*) &= 0 & i = 1, \dots, n, \\ \psi(e_{ij}^*) &= e_{ii}^* \wedge e_{ij}^* + e_{ij}^* \wedge e_{jj}^* + \sum_{i < k < j} 2e_{ik}^* \wedge e_{kj}^* & i < j, \\ \psi(e_{ij}^*) &= e_{ij}^* \wedge e_{ii}^* + e_{jj}^* \wedge e_{ij}^* + \sum_{j < k < i} 2e_{kj}^* \wedge e_{ik}^* & i > j. \end{split}$$

Example 1.7. Let \mathfrak{b} denote the Lie ideal $\mathbf{k}(\sum_i e_{ii}^*)$ of $(\mathfrak{m}/\mathfrak{m}^2)^*$ in Example 1.6. Then \mathfrak{b} is a Lie bialgebra ideal since $\psi(\mathfrak{b}) \subseteq (\mathfrak{m}/\mathfrak{m}^2)^* \otimes \mathfrak{b} + \mathfrak{b} \otimes (\mathfrak{m}/\mathfrak{m}^2)^*$ and thus $(\mathfrak{m}/\mathfrak{m}^2)^*/\mathfrak{b}$ is also a Lie bialgebra. In fact, it is checked immediately that the Lie bialgebra $(\mathfrak{m}/\mathfrak{m}^2)^*/\mathfrak{b}$ is isomorphic to the well-known Lie bialgebra $(\mathfrak{sl}_n(\mathbf{k}), \delta)$, where $\delta : \mathfrak{sl}_n(\mathbf{k}) \longrightarrow \mathfrak{sl}_n(\mathbf{k}) \wedge \mathfrak{sl}_n(\mathbf{k})$ is given by

(6)
$$\delta(h_i) = 0, \ \delta(E_{i,i+1}) = h_i \wedge E_{i,i+1}, \ \delta(E_{i+1,i}) = h_i \wedge E_{i+1,i},$$

where E_{ij} is the $n \times n$ -matrix with 0 for all positions except (i, j)-position and 1 for (i, j)-position and $h_i = E_{ii} - E_{i+1,i+1}$ for $i = 1, \ldots, n-1$ (The cobracket δ is uniquely determined by (6) since δ is a 1-cocycle and $\mathfrak{sl}_n(\mathbf{k})$ is generated by $h_i, E_{i,i+1}, E_{i+1,i}, i = 1, \ldots, n-1$). The cobracket δ in (6) is the standard Lie bialgebra structure in $\mathfrak{sl}_n(\mathbf{k})$ (see [2, 1.3.8]).

2. Application

2.1. Let $A = (A, \iota, m, \epsilon, \Delta)$ be a bialgebra. Note that the dual A^* is an A-A bimodule:

(7)
$$(a\varphi b)(x) = \varphi(bxa), \quad \varphi \in A^*, \ a, \ b, \ x \in A$$

For a left A-module M, the dual space M^* is a right A-module with structure

$$(fa)(x) = f(ax), \quad a \in A, f \in M^*, x \in M.$$

Let \mathcal{C} be a class of finite dimensional left A-modules which is closed under finite direct sums and finite tensor products. For any $M \in \mathcal{C}, f \in M^*$ and $v \in M$, the coordinate function $c_{f,v}^M \in A^*$ is defined by

$$c_{f,v}^M(x) = f(xv), \quad x \in A.$$

Then $c_{f,v}^M$ is an element of the restricted dual A° of A since the annihilator I of M is an ideal of A such that the dimension of A/I is finite and $c_{f,v}^M(I) = 0$. It is well-known that the vector space $A(\mathcal{C})$ spanned by all coordinate functions $c_{f,v}^M, M \in \mathcal{C}, f \in M^*, v \in M$, is a sub-bialgebra of A° with structure

(8)

$$c_{f,v}^{M} + c_{g,w}^{N} = c_{(f,g),(v,w)}^{M \oplus N}, \qquad c_{f,v}^{M} c_{g,w}^{N} = c_{f \otimes g,v \otimes w}^{M \otimes N},$$

$$\Delta(c_{f,v}^{M}) = \sum_{i} c_{f,v_{i}}^{M} \otimes c_{f_{i},v}^{M}, \qquad \epsilon(c_{f,v}^{M}) = f(v),$$

where $\{v_i\}$ and $\{f_i\}$ are dual bases for M and M^* (see [1, I.7]). Moreover if A is a Hopf algebra and C is closed under duals, then A(C) is a Hopf algebra with antipode S defined by

$$S(c^M_{f,v})=c^{M^*}_{v,f}, \quad M\in \mathcal{C}, f\in M^*, v\in M.$$

Observe that $A(\mathcal{C})$ has a left and right A-action induced by (7):

(9)
$$a \cdot c_{f,v}^M = c_{f,av}^M, \quad c_{f,v}^M \cdot a = c_{fa,v}^M, \quad a \in A.$$

2.2. Let (\mathfrak{g}, ψ) be a Lie bialgebra and let Δ be the comultiplication of $U(\mathfrak{g})$. The cobracket ψ is extended uniquely to a Δ -derivation $\overline{\psi}$ from $U(\mathfrak{g})$ into $U(\mathfrak{g}) \otimes U(\mathfrak{g})$. That is,

$$\overline{\psi}: U(\mathfrak{g}) \longrightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$$

is a k-linear map such that $\overline{\psi}|_{\mathfrak{g}} = \psi$ and $\overline{\psi}(xy) = \overline{\psi}(x)\Delta(y) + \Delta(x)\overline{\psi}(y)$ for all $x, y \in U(\mathfrak{g})$.

Let (\mathfrak{g}, ψ) be a coboundary Lie bialgebra such that the cobracket ψ determined by a classical *r*-matrix $r = \sum_i a_i \otimes b_i$. That is, *r* satisfies the modified classical Yang-Baxter equation and ψ is defined by

$$\psi(x) = x \cdot r = \sum_{i} [x, a_i] \otimes b_i + a_i \otimes [x, b_i] = [\Delta(x), r]_{U(\mathfrak{g}) \otimes U(\mathfrak{g})}$$

for all $x \in \mathfrak{g}$ (refer to [2, 2.1] and [9, §4.1] for the definition of a coboundary Lie bialgebra). Then the extension map $\overline{\psi}$ of ψ to $U(\mathfrak{g})$ is given by $\overline{\psi}(x) = [\Delta(x), r]_{U(\mathfrak{g}) \otimes U(\mathfrak{g})}$ for all $x \in U(\mathfrak{g})$.

Theorem. Let (\mathfrak{g}, ψ) be a coboundary Lie bialgebra such that the cobracket ψ is determined by a classical r-matrix r. Fix a class \mathcal{C} of finite dimensional left $U(\mathfrak{g})$ -modules which is closed under finite direct sums and finite tensor products. Denote by $A(\mathcal{C})$ the vector space spanned by all coordinate functions $c_{f,v}^M, M \in \mathcal{C}, f \in M^*, v \in M$. Then $A(\mathcal{C})$ is a Poisson bialgebra with Poisson bracket

(10)
$$\{c_{f,v}^M, c_{g,w}^N\}(x) = \langle \overline{\psi}(x), c_{f,v}^M \otimes c_{g,w}^N \rangle$$

for all $x \in U(\mathfrak{g})$.

Remark. Observe that, in the above theorem, $A(\mathcal{C})$ is a sub-Poisson bialgebra of the restricted dual $U(\mathfrak{g})^{\circ}$ and we obtain a Lie bialgebra $((\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2)$ by applying 1.5 to $A(\mathcal{C})$, where \mathfrak{m} is the kernel of the counit in $A(\mathcal{C})$.

Proof of Theorem. We have already known that $A(\mathcal{C})$ is a sub-bialgebra of the restricted dual $U(\mathfrak{g})^{\circ}$ with structure (8) by 2.1.

Denote $r = \sum_{i} a_i \otimes b_i$. Then

$$\overline{\psi}(x) = [\Delta(x), r]_{U(\mathfrak{g}) \otimes U(\mathfrak{g})} = \sum_{(x)} \sum_{i} (x'a_i \otimes x''b_i - a_i x' \otimes b_i x'')$$

for all $x \in U(\mathfrak{g})$, thus

$$\begin{aligned} \{c_{f,v}^{M}, c_{g,w}^{N}\}(x) &= \sum_{i} \sum_{(x)} c_{f,v}^{M}(x'a_{i}) c_{g,w}^{N}(x''b_{i}) - \sum_{i} \sum_{(x)} c_{f,v}^{M}(a_{i}x') c_{g,w}^{N}(b_{i}x'') \\ &= \sum_{i} (c_{f,a_{i}v}^{M} c_{g,b_{i}w}^{N})(x) - \sum_{i} (c_{fa_{i},v}^{M} c_{gb_{i},w}^{N})(x). \end{aligned}$$

Hence

(11)
$$\{c_{f,v}^M, c_{g,w}^N\} = \sum_i (c_{f,a_iv}^M c_{g,b_iw}^N) - \sum_i (c_{fa_i,v}^M c_{gb_i,w}^N) \in A(\mathcal{C}),$$

that is, the Poisson bracket (10) is well-defined.

Let $\tau : U(\mathfrak{g}) \otimes U(\mathfrak{g}) \longrightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$ be the flip. Since $U(\mathfrak{g})$ is cocommutative and $\tau(r) = -r$, we have that $\tau \overline{\psi}(x) = -\overline{\psi}(x)$ for all $x \in U(\mathfrak{g})$, thus we have immediately that $\{c_{f,v}^M, c_{g,w}^N\} = -\{c_{g,w}^N, c_{f,v}^M\}$ for all $c_{f,v}^M, c_{g,w}^N \in A(\mathcal{C})$ by (10). For distinct numbers s, t = 1, 2, 3, denote by $r_{st} \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ the element with

For distinct numbers s, t = 1, 2, 3, denote by $r_{st} \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ the element with a_i for s-component, b_i for t-component and 1 for the other component. For instance, $r_{12} = \sum a_i \otimes b_i \otimes 1$ and $r_{31} = \sum b_i \otimes 1 \otimes a_i$. Note that $r_{st} = -r_{ts}$ for all distinct numbers s, t = 1, 2, 3, by the skew symmetry of r. Since $\Delta(a) =$

 $a \otimes 1 + 1 \otimes a$ for all $a \in \mathfrak{g}$, we have

$$\{\{c_{f,v}^{M}, c_{g,w}^{N}\}, c_{h,u}^{L}\}(x) = \langle \Delta^{2}(x)(r_{13} + r_{23})r_{12}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle - \langle r_{12}\Delta^{2}(x)(r_{13} + r_{23}), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle - \langle (r_{13} + r_{23})\Delta^{2}(x)r_{12}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle + \langle r_{12}(r_{13} + r_{23})\Delta^{2}(x), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle$$

for $x \in U(\mathfrak{g})$, where $\Delta^2 = (\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta$, by (10). Hence, by $r_{st} = -r_{ts}$ for all s, t = 1, 2, 3 and the coassociativity of Δ , we have that

$$\begin{split} &(\{\{c_{f,v}^{M}, c_{g,w}^{N}\}, c_{h,u}^{L}\} + \{\{c_{g,w}^{N}, c_{h,u}^{L}\}, c_{f,v}^{M}\} + \{\{c_{h,u}^{L}, c_{f,v}^{M}\}, c_{g,w}^{N}\})(x) \\ &= \langle \Delta^{2}(x)(r_{13} + r_{23})r_{12}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle r_{12}\Delta^{2}(x)(r_{13} + r_{23}), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle (r_{13} + r_{23})\Delta^{2}(x)r_{12}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &+ \langle r_{12}(r_{13} + r_{23})\Delta^{2}(x), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &+ \langle \Delta^{2}(x)(r_{21} + r_{31})r_{23}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle (r_{21} + r_{31})\Delta^{2}(x)r_{23}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle (r_{21} + r_{31})\Delta^{2}(x)r_{23}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &+ \langle \Delta^{2}(x)(r_{32} + r_{12})r_{31}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle (r_{31}\Delta^{2}(x)(r_{32} + r_{12}), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle (r_{32} + r_{12})\Delta^{2}(x)r_{31}, c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &+ \langle r_{31}(r_{32} + r_{12})\Delta^{2}(x), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &= \langle ([r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}])\Delta^{2}(x), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &- \langle \Delta^{2}(x)([r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}]), c_{f,v}^{M} \otimes c_{g,w}^{N} \otimes c_{h,u}^{L} \rangle \\ &= 0 \end{split}$$

for any $c^M_{f,v}, c^N_{g,w}, c^L_{h,u} \in A(\mathcal{C})$ and $x \in U(\mathfrak{g})$ since

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}]$$

= $(r_{12}r_{13} - r_{13}r_{12}) + (r_{12}r_{23} - r_{23}r_{12}) + (r_{13}r_{23} - r_{23}r_{13})$
= $\sum_{i,j} [a_i, a_j] \otimes b_i \otimes b_j + \sum_{i,j} a_i \otimes [b_i, a_j] \otimes b_j + \sum_{i,j} a_i \otimes a_j \otimes [b_i, b_j]$

is $\mathfrak{g}\text{-invariant}.$ Hence the Poisson bracket (10) satisfies the Jacobi identity.

By (11), we have

$$\begin{split} \{c_{f,v}^{M}, c_{g,w}^{N} c_{h,u}^{L}\} &= \sum_{i} c_{f,a_{i}v}^{M} (c_{g,b_{i}w}^{N} c_{h,u}^{L} + c_{g,w}^{N} c_{h,b_{i}u}^{L}) \\ &- \sum_{i} c_{fa_{i},v}^{M} (c_{gb_{i},w}^{N} c_{h,u}^{L} + c_{g,w}^{N} c_{hb_{i},u}^{L}) \\ &= \{c_{f,v}^{M}, c_{g,w}^{N}\} c_{h,u}^{L} + c_{g,w}^{N} \{c_{f,v}^{M}, c_{h,u}^{L}\}. \end{split}$$

It follows that the Poisson bracket (10) satisfies the Leibniz rule.

Let us prove that $\Delta(\{c_{f,v}^M, c_{g,w}^N\}) = \{\Delta(c_{f,v}^M), \Delta(c_{g,w}^N)\}$ for all elements $c_{f,v}^M$, $c_{g,w}^N \in A(\mathcal{C})$. Note that $\Delta(c_{f,v}^M) = \sum_j c_{f,v_j}^M \otimes c_{f_j,v}^M, \Delta(c_{g,w}^N) = \sum_k c_{g,w_k}^N \otimes c_{g_k,w}^N$, where $\{v_j\}, \{f_j\}$ are dual bases for M and M^* and $\{w_k\}, \{g_k\}$ are dual bases for N and N^* . Now, for any $x, y \in U(\mathfrak{g})$,

$$\begin{split} \Delta(\{c_{f,v}^{M}, c_{g,w}^{N}\})(x \otimes y) &= \langle \overline{\psi}(xy), c_{f,v}^{M} \otimes c_{g,w}^{N} \rangle \\ &= \langle \overline{\psi}(x) \Delta(y), c_{f,v}^{M} \otimes c_{g,w}^{N} \rangle + \langle \Delta(x) \overline{\psi}(y), c_{f,v}^{M} \otimes c_{g,w}^{N} \rangle \\ &= \sum_{j,k} \langle \overline{\psi}(x), c_{f,vj}^{M} \otimes c_{g,wk}^{N} \rangle \langle \Delta(y), c_{f,v}^{M} \otimes c_{g,wk}^{N} \rangle \\ &+ \sum_{j,k} \langle \Delta(x), c_{f,vj}^{M} \otimes c_{g,wk}^{N} \rangle \langle \overline{\psi}(y), c_{fj,v}^{M} \otimes c_{gk,w}^{N} \rangle \\ &= \sum_{j,k} (\{c_{f,v_{j}}^{M}, c_{g,w_{k}}^{N}\} \otimes c_{fj,v}^{M} c_{gk,w}^{N})(x \otimes y) \\ &+ \sum_{j,k} (c_{f,v_{j}}^{M} c_{g,w_{k}}^{N} \otimes \{c_{fj,v}^{M}, c_{gk,w}^{N}\})(x \otimes y) \\ &= \{\Delta(c_{f,v}^{M}), \Delta(c_{g,w}^{N})\}(x \otimes y). \end{split}$$

Hence we have $\Delta(\{c_{f,v}^M, c_{g,w}^N\}) = \{\Delta(c_{f,v}^M), \Delta(c_{g,w}^N)\}$ for all elements $c_{f,v}^M, c_{g,w}^N \in A(\mathcal{C})$. This completes the proof.

Proposition 2.3. Let (\mathfrak{g}, ψ) be a coboundary Lie bialgebra such that \mathfrak{g} is connected and simply connected and let \mathcal{C} be the set of all finite dimensional left $U(\mathfrak{g})$ -modules. Then $A(\mathcal{C})$ is the restricted dual $U(\mathfrak{g})^{\circ}$. Moreover the given Lie bialgebra (\mathfrak{g}, ψ) is isomorphic to $((\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2)$, where \mathfrak{m} is the kernel of the counit ϵ of $A(\mathcal{C})$.

Proof. Note that the set of all finite dimensional left $U(\mathfrak{g})$ -modules is closed under finite direct sums and finite tensor products. Since every element of the restricted dual $U(\mathfrak{g})^{\circ}$ is represented by a coordinate function $c_{f,v}^{M}$ for some finite dimensional left $U(\mathfrak{g})$ -module M, we have immediately that $A(\mathcal{C})$ is the restricted dual $U(\mathfrak{g})^{\circ}$. Moreover $((\mathfrak{m}/\mathfrak{m}^{2})^{*}, \mathfrak{m}/\mathfrak{m}^{2})$ is a Lie bialgebra by 2.2 and 1.5, and $\mathfrak{g} = (\mathfrak{m}/\mathfrak{m}^{2})^{*}$ by [7, 7.11]. Thus \mathfrak{g}^{*} is equal to $\mathfrak{m}/\mathfrak{m}^{2}$ as a Lie algebra by (3) and (10). It follows that the Lie bialgebra $((\mathfrak{m}/\mathfrak{m}^{2})^{*}, \mathfrak{m}/\mathfrak{m}^{2})$ is equal to $(\mathfrak{g}, \psi) = (\mathfrak{g}, \mathfrak{g}^{*})$.

Example 2.4. In the symplectic Lie algebra \mathfrak{sp}_4 , set

$$\begin{array}{ll} h_1 = E_{11} - E_{22} - E_{33} + E_{44}, & h_2 = E_{22} - E_{44}, \\ e_1 = E_{12} - E_{43}, & e_2 = E_{24}, & e_3 = E_{14} + E_{23}, & e_4 = E_{13}, \\ f_1 = E_{21} - E_{34}, & f_2 = E_{42}, & f_3 = E_{41} + E_{32}, & f_4 = E_{31} \end{array}$$

(see [5, 8.3] for \mathfrak{sp}_4). Let H be the subspace of \mathfrak{sp}_4 spanned by h_1, h_2 and let $\alpha_1, \alpha_2 \in H^*$ be defined by

$$\alpha_1(h_1) = 2, \quad \alpha_2(h_1) = -2, \\ \alpha_1(h_2) = -1, \quad \alpha_2(h_2) = 2.$$

Then $e_1, e_2, e_3, e_4, f_1, f_2, f_3, f_4$ are weight vectors with weights

$$\begin{aligned} & \text{wt}(e_1) = \alpha_1, \quad \text{wt}(e_2) = \alpha_2, \quad \text{wt}(e_3) = \alpha_1 + \alpha_2, \quad \text{wt}(e_4) = 2\alpha_1 + \alpha_2, \\ & \text{wt}(f_1) = -\alpha_1, \quad \text{wt}(f_2) = -\alpha_2, \quad \text{wt}(f_3) = -(\alpha_1 + \alpha_2), \quad \text{wt}(f_4) = -(2\alpha_1 + \alpha_2) \end{aligned}$$

Hence α_1, α_2 are positive simple roots. It is well-known that

$$\mathbf{r} = e_1 \wedge f_1 + 2e_2 \wedge f_2 + e_3 \wedge f_3 + 2e_4 \wedge f_4 \in \mathfrak{sp}_4 \wedge \mathfrak{sp}_4$$

satisfies the modified classical Yang-Baxter equation and gives the standard Lie bialgebra structure ψ in \mathfrak{sp}_4 such that

$$\begin{split} \psi(h_1) &= 0, & \psi(h_2) = 0, \\ \psi(e_1) &= e_1 \wedge h_1, & \psi(e_2) = 2e_2 \wedge h_2, \\ \psi(e_3) &= e_3 \wedge h_1 + 2e_3 \wedge h_2 - 4e_1 \wedge e_2, & \psi(e_4) = 2e_4 \wedge h_1 + 2e_4 \wedge h_2 - 2e_1 \wedge e_3, \\ \psi(f_1) &= f_1 \wedge h_1, & \psi(f_2) = 2f_2 \wedge h_2, \\ \psi(f_3) &= f_3 \wedge h_1 + 2f_3 \wedge h_2 - 4f_1 \wedge f_2, & \psi(f_4) = 2f_4 \wedge h_1 + 2f_4 \wedge h_2 - 2f_1 \wedge f_3 \end{split}$$

(see [9, Exercise 4.1.11]).

r

The weight lattice **P** in \mathfrak{sp}_4 is a free abelian group with basis consisting of the fundamental dominant integral weights λ_1, λ_2 , where $\lambda_i(h_j) = \delta_{ij}$ for i, j = 1, 2. Hence

$$\alpha_1 = 2\lambda_1 - \lambda_2, \quad \alpha_2 = -2\lambda_1 + 2\lambda_2.$$

The natural \mathfrak{sp}_4 -module $V = \mathbf{k}^4$ is an irreducible highest weight module with highest weight λ_1 . In fact, set

$$v_1 = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, v_3 = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, v_4 = \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix} \in V.$$

Then v_1 is a highest weight vector with highest weight λ_1 and

$$\begin{aligned} v_1 \in V_{\lambda_1}, v_2 &= f_1 v_1 \in V_{-\lambda_1 + \lambda_2}, v_3 = f_2 v_2 \in V_{\lambda_1 - \lambda_2}, v_4 = f_1 v_3 \in V_{-\lambda_1}. \\ & (v_1 \stackrel{f_1}{\longrightarrow} v_2 \stackrel{f_2}{\longrightarrow} v_3 \stackrel{f_1}{\longrightarrow} v_4) \end{aligned}$$

Here we simply write $c_{f,v}$ for $c_{f,v}^V$, $v \in V, f \in V^*$. Observe that

$$v_1^* = (V^*)_{-\lambda_1}, v_2^* = v_1^* e_1 \in (V^*)_{\lambda_1 - \lambda_2}, v_3^* = v_2^* e_2 \in (V^*)_{-\lambda_1 + \lambda_2}, v_4^* = v_3^* e_1 \in (V^*)_{\lambda_1}$$
$$(v_1^* \xrightarrow{e_1} v_2^* \xrightarrow{e_2} v_3^* \xrightarrow{e_1} v_4^*)$$

and

$$\mathcal{C} = \{\mathbf{k}, V^n, V^{\otimes n} \mid n = 1, 2, \ldots\}$$

is a class of $U(\mathfrak{sp}_4)$ -modules closed under finite direct sums and finite tensor products. Thus $A(\mathcal{C})$ is a sub-Poisson bialgebra of the Poisson bialgebra $U(\mathfrak{sp}_4)^\circ$ by 2.2. Set

$$\begin{aligned} h_1^* &= \overline{c_{v_1^*, v_1} - 1}, \quad h_2^* &= \overline{c_{v_2^*, v_2} + c_{v_1^*, v_1} - 2}, \\ x_1^* &= \overline{c_{v_1^*, v_2}}, \qquad x_2^* &= \overline{c_{v_1^*, v_3}}, \qquad y_1^* &= \overline{c_{v_2^*, v_1}}, \quad y_2^* &= \overline{c_{v_3^*, v_1}} \end{aligned}$$

in $\mathfrak{m}/\mathfrak{m}^2$, where $\mathfrak{m} = \ker \epsilon$. Let S be the antipode of $U(\mathfrak{sp}_4)^\circ$. Since $V^* \cong V$ as a $U(\mathfrak{sp}_4)$ -module and $m \circ (\operatorname{id}_{U(\mathfrak{sp}_4)^*} \otimes S) \circ \Delta = \epsilon 1$, we have

$$\begin{array}{lll} \overline{c_{v_3^*,v_4}} = -\overline{c_{v_1^*,v_2}}, & \overline{c_{v_2^*,v_4}} = -\overline{c_{v_1^*,v_3}}, & \overline{c_{v_2^*,v_3}} = 0, & \overline{c_{v_1^*,v_4}} = 0, \\ \overline{c_{v_4^*,v_3}} = -\overline{c_{v_2^*,v_1}}, & \overline{c_{v_3^*,v_1}} = -\overline{c_{v_4^*,v_2}}, & \overline{c_{v_3^*,v_2}} = 0, & \overline{c_{v_4^*,v_4}} = 0. \end{array} \end{array}$$

It follows that $\mathfrak{m}/\mathfrak{m}^2$ is a 6-dimensional Lie algebra with structure

$$\begin{array}{ll} [h_1^*,h_2^*]=0, & [h_1^*,x_1^*]=-x_1^*, & [h_1^*,x_2^*]=-x_2^*, \\ [h_1^*,y_1^*]=-y_1^*, & [h_1^*,y_2^*]=-y_2^*, & [h_2^*,x_1^*]=0, \\ [h_2^*,x_2^*]=-2x_2^*, & [h_2^*,y_1^*]=0, & [h_2^*,y_2^*]=-2y_2^*, \\ [x_1^*,x_2^*]=0, & [y_1^*,y_2^*]=0, & [x_i^*,y_j^*]=0 & (i,j=1,2). \end{array}$$

where $[h_1^*, h_2^*] = \overline{\{c_{v_1^*, v_1} - 1, c_{v_2^*, v_2} + c_{v_1^*, v_1} - 2\}} \in \mathfrak{m}/\mathfrak{m}^2$, etc. and the dual Lie algebra $(\mathfrak{m}/\mathfrak{m}^2)^*$ is a six dimensional Lie algebra with the following structure

$$\begin{split} & [h_1,h_2]=0, & [h_1,x_1]=2x_1, & [h_1,x_2]=0, \\ & [h_1,y_1]=-2y_1, & [h_1,y_2]=0, & [h_2,x_1]=-x_1, \\ & [h_2,x_2]=x_2, & [h_2,y_1]=y_1, & [h_2,y_2]=-y_2, \\ & [x_1,x_2]=0, & [y_1,y_2]=0, & [x_1,y_1]=h_1, \\ & [x_1,y_2]=0, & [x_2,y_1]=0, & [x_2,y_2]=h_1+2h_2. \end{split}$$

Hence the Lie algebra $(\mathfrak{m}/\mathfrak{m}^2)^*$ is a Lie bialgebra with cobracket ψ satisfying

$$\begin{split} \psi(h_1) &= 0, & \psi(h_2) = 0, \\ \psi(x_1) &= x_1 \wedge h_1, & \psi(x_2) = x_2 \wedge h_1 + 2x_2 \wedge h_2, \\ \psi(y_1) &= y_1 \wedge h_1, & \psi(y_2) = y_2 \wedge h_1 + 2y_2 \wedge h_2. \end{split}$$

References

- K. A. Brown and K. R. Goodearl, *Lectures on Algebraic Quantum Groups*, Advanced Courses in Mathematics. CRM Barcelona. Birkhauser Verlag, Basel, 2002.
- [2] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
- [3] T. J. Hodges and T. Levasseur, Primitive ideals of $C_q[SL(3)]$, Comm. Math. Phys. 156 (1993), no. 3, 581–605.
- [4] T. J. Hodges, T. Levasseur, and M. Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52–92.

- [5] J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002.
- [6] J. E. Humphreys, *Linear Algebraic Groups*, Graduate Texts in Mathematics, vol. 21, Springer-Verlag Inc., thirding printing, 1987.
- [7] J. C. Jantzen, *Lectures on Quantum Groups*, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, 1996.
- [8] A. Joseph, Quantum Groups and Their Primitive Ideals, A series of modern surveys in mathematics, vol. 3. Folge-Band 29, Springer-Verlag, Berlin, 1995.
- [9] L. I. Korogodski and Y. S. Soibelman, Algebras of Functions on Quantum Groups. Part I., Mathematical Surveys and Monographs, 56. American Mathematical Society, Providence, RI, 1998.
- [10] L. A. Lambe and D. E. Radford, Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: an algebraic approach, Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.

SEI-QWON OH DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA *E-mail address:* sqoh@cnu.ac.kr

EUN-HEE CHO DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA *E-mail address:* ehcho@cnu.ac.kr