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LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS

Sei-Qwon Oh and Eun-Hee Cho

Abstract. It gives a method to obtain a natural Lie bialgebra from a
Poisson bialgebra by an algebraic point of view. Let g be a coboundary
Lie bialgebra associated to a Poission Lie group G. As an application,
we obtain a Lie bialgebra from a sub-Poisson bialgebra of the restricted
dual of the universal enveloping algebra U(g).

Introduction

Assume throughout that G denotes a connected and simply connected Lie
group with Lie algebra g, O(G) the coordinate ring of G and U(g) the universal
enveloping algebra of g.

If G is a Poisson Lie group, then O(G) is a Poisson Hopf algebra and g
becomes a Lie bialgebra. Conversely, if g has a Lie bialgebra structure, then G
becomes a Poisson Lie group by [2, Chapter 1]. On the other hand, if U(g) has
a co-Poisson Hopf structure with co-Poisson bracket δ, then (g, δ|g) becomes
a Lie bialgebra. Conversely if (g, δ) is a Lie bialgebra, then the cobracket δ
extends uniquely to a Poisson co-bracket on U(g), which makes U(g) into a
co-Poisson Hopf algebra (see [2, Proposition 6.2.3]). Moreover, the coordinate
ring O(G) is isomorphic as a Hopf algebra to the restricted dual U(g)◦ of
U(g) and it is sometimes more convenient to work on U(g)◦ than to do on
O(G). For instance, Hodges and his colleagues worked on restricted duals to
obtain mathematical properties of a quantum group in [3] and [4]. Hence it
makes sense mathematically to study a relationship between Lie bialgebras and
restricted duals of their enveloping algebras.

Let (A, ι,m, {·, ·}, ε,∆) be a Poisson bialgebra and m = ker ε. In 1.5, we
prove by an algebraic point of view that the pair ((m/m2)∗,m/m2) is a natural
Lie bialgebra obtained from (A, ι,m, {·, ·}, ε,∆).

Let g be a coboundary Lie bialgebra. The restricted dual A of U(g) is
the vector space spanned by all coordinate functions cMf,v, where M is a finite
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dimensional left U(g)-module and f ∈ M∗, v ∈ M . Here we give an explicit
Poisson bracket on A that is the Sklyanin Poisson bracket. Let B be a sub-
Poisson bialgebra of the restricted dual A. Then, as an application of 1.5, we
obtain a Lie bialgebra ((mB/m

2
B)∗,mB/m

2
B) arising from B, where mB is the

kernel of the counit in B.

Assume throughout that k denotes a field of characteristic zero, all vector
spaces considered here are over k and if A is a bialgebra with comultiplication
∆, then we use Sweedler’s notation

∆(a) =
∑

(a)

a′ ⊗ a′′, a ∈ A.

Recall that a Poisson algebra A is a k-algebra with k-bilinear map {·, ·},
called a Poisson bracket, such that

(a) (A, {·, ·}) is a Lie algebra over k.
(b) {ab, c} = a{b, c}+ {a, c}b for all a, b, c ∈ A. (Leibniz rule)

1. Lie bialgebra arising from Poisson bialgebra

Definition 1.1. A Poisson algebra A with Poisson bracket {·, ·} is said to be
a Poisson bialgebra if A is also a bialgebra (A, ι,m, ε,∆) over k such that

(1) ∆({a, b}) = {∆(a),∆(b)}A⊗A

for all a, b ∈ A, where the Poisson bracket {·, ·}A⊗A on A⊗A is defined by

{a⊗ b, c⊗ d}A⊗A = {a, c} ⊗ bd+ ac⊗ {b, d}
for all a, b, c, d ∈ A.

A Poisson bialgebra A is often denoted by A = (A, ι,m, {·, ·}, ε,∆). If a
Poisson bialgebra A is a Hopf algebra, then A is called a Poisson Hopf algebra
(see [2, 6.2.1] and [1, III.5.3]). Note, by (1), that

(2) ∆({a, b}) =
∑

a′b′ ⊗ {a′′, b′′}+ {a′, b′} ⊗ a′′b′′

for all elements a, b of a Poisson bialgebra A.

Lemma 1.2. If (A, ι,m, {·, ·}, ε,∆) is a Poisson bialgebra, then ε({a, b}) = 0
for all a, b ∈ A.

Proof. By (2), we have that
{a, b} = m ◦ (ε⊗ idA) ◦∆({a, b})

= m ◦ (ε⊗ idA)(
∑

{a′, b′} ⊗ a′′b′′ + a′b′ ⊗ {a′′, b′′})
=

∑
ε({a′, b′})a′′b′′ +

∑
ε(a′b′){a′′, b′′}

=
∑

ε({a′, b′})a′′b′′ + {a, b}
for a, b ∈ A and thus we have

∑
ε({a′, b′})a′′b′′ = 0. Hence

0 = ε(
∑

ε({a′, b′})a′′b′′) =
∑

ε({a′, b′})ε(a′′)ε(b′′) = ε({a, b}),
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as claimed. ¤

Corollary 1.3. In a Poisson bialgebra (A, ι,m, {·, ·}, ε,∆), set ker ε = m. Then
m/m2 is a Lie algebra with Lie bracket

(3) [a+ m2, b+ m2] = {a, b}+ m2, a, b ∈ m.

Proof. The Lie bracket (3) is well-defined by Lemma 1.2. Clearly (m/m2, [·, ·])
is a Lie algebra. ¤

1.4. Let (A, ι,m, ε,∆) be a bialgebra and set

A◦ = {f ∈ A∗ | f(I) = 0 for some ideal I of A such that dim(A/I) <∞}.
Then A◦, called the restricted dual of A, becomes a bialgebra with bialgebra
structure: For f, g ∈ A◦ and a, b ∈ A,

(fg)(a) =
∑

f(a′)g(a′′), ∆(f)(a⊗ b) = f(ab).

Denote

Pε(A◦) = {f ∈ A◦ | f(ab) = ε(a)f(b) + f(a)ε(b), ∀a, b ∈ A}.
That is, Pε(A◦) = {f ∈ A◦ | ∆(f) = ε ⊗ f + f ⊗ ε}. It is well-known that
Pε(A◦) is a Lie algebra with Lie bracket

[f, g] = fg − gf

for all f, g ∈ Pε(A◦).

Denote m = ker ε and let i : m −→ A be the canonical injection. Then i∗ is
a surjection of A∗ onto m∗. Let f ∈ ker i∗. Then f(a− ε(a)1) = 0 for all a ∈ A
since f(m) = 0 and a−ε(a)1 ∈ m. Thus f = f(1)ε for f ∈ ker i∗. It follows that
ker i∗ = kε. Given f, g ∈ m∗, choose representatives f ′ = i∗−1(f), g′ = i∗−1(g).
If f ′1 = i∗−1(f), g′1 = i∗−1(g), then f ′1 = f ′+αε, g′1 = g′+βε for some α, β ∈ k.
Thus

f ′1g
′
1 − g′1f

′
1 = (f ′ + αε)(g′ + βε)− (g′ + βε)(f ′ + αε)

= (f ′g′ + βf ′ + αg′ + αβε)− (g′f ′ + βf ′ + αg′ + αβε)

= f ′g′ − g′f ′

since ε is the multiplicative identity in A∗. Hence [f, g] = i∗(f ′g′ − g′f ′) is
independent of representatives and defines a Lie bracket on m∗. Identifying
{f ∈ m∗ | f(m2) = 0} with (m/m2)∗, (m/m2)∗ is a Lie subalgebra of m∗ by [8,
2.1.2].

Lemma. The linear map

i∗|Pε(A◦) : Pε(A◦) −→ (m/m2)∗, f 7→ i∗|Pε(A◦)(f) = f |m
is a Lie isomorphism.
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Proof. Note that A = k1A ⊕ m and if f ∈ Pε(A◦), then f(m2) = 0. Hence
i∗|Pε(A◦) is well-defined. If f ∈ ker(i∗|Pε(A◦)), then

f(α1A + a) = αf(1A) + f(a) = 0

for all α ∈ k and a ∈ m. It follows that i∗|Pε(A◦) is injective. If f ∈ m∗ such
that f(m2) = 0, then f is extended to A, denoted by f ′, by setting

f ′(k1A) = 0, f ′|m = f.

Then, for any α, β ∈ k and a, b ∈ m,

f ′((α1A + a)(β1A + b)) = f(αb) + f(βa)

= ε(α1A + a)f ′(β1A + b) + f ′(α1A + a)ε(β1A + b).

Hence f ′ ∈ Pε(A◦) and thus i∗|Pε(A◦) is surjective. Now i∗|Pε(A◦) is a Lie
isomorphism by the definition of Lie brackets. ¤

1.5. Let us recall the definition for Lie bialgebra in [2, 1.3] and [9, 2.1.1]. A
Lie bialgebra is a pair (g, ψ), where g is a Lie algebra and ψ : g −→ g∧g, called
cobracket, satisfying the following conditions:

(a) The dual map ψ∗ : g∗ ∧ g∗ −→ g∗ makes g∗ a Lie algebra.
(b) The cobracket ψ : g −→ g ∧ g is a 1-cocycle on g with respect to the

g-module structure on g ∧ g given by the adjoint action. In other words, we
have that for any a, b ∈ g,

ψ([a, b]) = a · ψ(b)− b · ψ(a),

where
a · (b⊗ c) = [a⊗ 1 + 1⊗ a, b⊗ c] = [a, b]⊗ c+ b⊗ [a, c].

In a Lie bialgebra (g, ψ), a Lie ideal b of g is said to be a Lie bialgebra ideal
if ψ(b) ⊆ g⊗ b + b⊗ g. A Lie homomorphism ϕ : (g, ψ) −→ (g′, ψ′) is said to
be a Lie bialgebra homomorphism if (ϕ⊗ϕ)◦ψ = ψ′ ◦ϕ. Note that if b is a Lie
bialgebra ideal of (g, ψ), then (g/b, ψ) is also a Lie bialgebra. A Lie bialgebra
(g, ψ) is frequently denoted by (g, g∗).

Theorem. Let (A, ι,m, {·, ·}, ε,∆) be a Poisson bialgebra and let m = ker ε.
Then ((m/m2)∗,m/m2) is a Lie bialgebra.

Proof. We will show that the pair ((m/m2)∗, ψ) is a Lie bialgebra, where ψ :
(m/m2)∗ −→ (m/m2)∗ ∧ (m/m2)∗ is defined by

(4) ψ(f)(z1 ⊗ z2) = f([z1, z2])

for all z1, z2 ∈ m/m2. It is enough to prove that ψ is a 1-cocycle on (m/m2)∗.
The natural k-bilinear form 〈·, ·〉 defined by

〈·, ·〉 : (m/m2)∗ ×m/m2 −→ k, 〈f, a+ m2〉 = f(a+ m2)
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is a nondegenerate k-bilinear form. Identifying (m/m2)∗ to Pε(A◦) by 1.4, we
have that, for f, g ∈ (m/m2)∗ and a, b ∈ m,

〈ψ([f, g]), (a+ m2)⊗ (b+ m2)〉 = 〈[f, g], {a, b}+ m2〉
= (fg)({a, b})− (gf)({a, b})
=

∑
f(a′b′)g({a′′, b′′}) + f({a′, b′})g(a′′b′′)

− g(a′b′)f({a′′, b′′})− g({a′, b′})f(a′′b′′)

=
∑

(ε(a′)f(b′) + f(a′)ε(b′))g({a′′, b′′})
+ f({a′, b′})(ε(a′′)g(b′′) + g(a′′)ε(b′′))

− (ε(a′)g(b′) + g(a′)ε(b′))f({a′′, b′′})
− g({a′, b′})(ε(a′′)f(b′′) + f(a′′)ε(b′′))

=
∑

f(b′)g({a, b′′}) + f(a′)g({a′′, b})
+ f({a′, b})g(a′′) + f({a, b′})g(b′′)
− g(b′)f({a, b′′})− g(a′)f({a′′, b})
− g({a, b′})f(b′′)− g({a′, b})f(a′′)

by (2). Let

ψ(f) =
∑
f1 ⊗ f2, ψ(g) =

∑
g1 ⊗ g2.

Then, by (4), we have

f({a, b}) = 〈ψ(f), (a+ m2)⊗ (b+ m2)〉 =
∑
f1(a)f2(b),

g({a, b}) = 〈ψ(g), (a+ m2)⊗ (b+ m2)〉 =
∑
g1(a)g2(b)

for all a, b ∈ m. Hence

〈f · ψ(g)− g · ψ(f), (a+ m2)⊗ (b+ m2)〉
= 〈

∑
[f, g1]⊗ g2 + g1 ⊗ [f, g2]− [g, f1]⊗ f2 − f1 ⊗ [g, f2],

(a+ m2)⊗ (b+ m2)〉
=

∑
f(a′)g1(a′′)g2(b)− g1(a′)f(a′′)g2(b)

+ g1(a)f(b′)g2(b′′)− g1(a)g2(b′)f(b′′)

− g(a′)f1(a′′)f2(b) + f1(a′)g(a′′)f2(b)

− f1(a)g(b′)f2(b′′) + f1(a)f2(b′)g(b′′)

=
∑

f(a′)g({a′′, b})− g({a′, b})f(a′′)

+ f(b′)g({a, b′′})− g({a, b′})f(b′′)

− g(a′)f({a′′, b}) + f({a′, b})g(a′′)
− g(b′)f({a, b′′}) + f({a, b′})g(b′′).
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Thus we have ψ([f, g]) = f · ψ(g)− g · ψ(f) for all f, g ∈ (m/m2)∗ and so ψ is
a 1-cocycle as claimed. ¤

Example 1.6. Let q be an indeterminate over k. By [1, I.2.2], the coordinate
ring of quantum n× n-matrices, denoted by Oq(Mn(k)), is the k[q±1]-algebra
generated by xij , 1 ≤ i, j ≤ n, subject to the relations

xijxrs =





qxrsxij i = r and j < s,
qxrsxij i < r and j = s,
xrsxij i < r and j > s,
xrsxij + (q − q−1)xisxrj i < r and j < s.

Thus

xijxrs − xrsxij =





(q − 1)xrsxij i = r and j < s,
(q − 1)xrsxij i < r and j = s,
0 i < r and j > s,
q−1(q − 1)(q + 1)xisxrj i < r and j < s.

Hence Oq(Mn(k))/〈q− 1〉 is the commutative k-algebra k[xij | i, j = 1, . . . , n].
Moreover Oq(Mn(k))/〈q − 1〉 is a Poisson algebra with Poisson bracket

{xij , xrs} = (q − 1)−1(xijxrs − xrsxij)

by [1, III.5.4]. More precisely, we have that

{xij , xrs} =





xrsxij i = r and j < s,
xrsxij i < r and j = s,
0 i < r and j > s,
2xisxrj i < r and j < s.

The coordinate ring of n× n-matrices is the commutative k-algebra

k[xij | i, j = 1, . . . , n],

denoted by O(Mn(k)), which is a bialgebra with the coalgebra structure

ε(xij) = δij , ∆(xij) =
n∑

k=1

xik ⊗ xkj .

The algebra O(Mn(k)) is also a Poisson algebra with Poisson bracket

(5) {xij , xrs} =





xijxrs i = r and j < s,
xijxrs i < r and j = s,
0 i < r and j > s,
2xisxrj i < r and j < s

by the above paragraph. Moreover O(Mn(k)) is a Poisson bialgebra since

∆({xij , xrs}) = {∆(xij),∆(xrs)}
for all i, j, r, s, any Poisson bracket satisfies the Leibniz rule and ∆ is an algebra
homomorphism.
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In m/m2, set

eij = xij + m2, ekk = (xkk − 1) + m2, i 6= j, 1 ≤ k ≤ n.

Then eij , i, j = 1, . . . , n, form a k-basis of m/m2 and satisfy

[eii, eis] = eis i < s,

[eii, eis] = −eis i > s,

[eij , eis] = 0 i 6= j, i 6= s,

[eii, eri] = eri i < r,

[eii, eri] = −eri i > r,

[eij , erj ] = 0 i 6= j, r 6= j,

[eij , ers] = 0 i < r, j < s, i 6= s, r 6= j,

[eij , ers] = 2erj i < r, j < s, i = s, r 6= j,

[eij , ers] = 2eis i < r, j < s, i 6= s, r = j,

[eij , ers] = 0 i < r, j > s,

[eii, err] = 0 i 6= r

by (5). The dual (m/m2)∗ has the dual basis e∗ij for eij , i, j = 1, . . . , n, satisfying

[e∗ij , e
∗
rs] = δjre

∗
is − δsie

∗
rj

for all i, j, r, s. That is, (m/m2)∗ is isomorphic to the general linear Lie algebra
gln(k). Moreover the pair ((m/m2)∗,m/m2) is a Lie bialgebra by 1.5. Now the
cobracket ψ : (m/m2)∗ −→ (m/m2)∗ ∧ (m/m2)∗ is given by

ψ(e∗ii) = 0 i = 1, . . . , n,

ψ(e∗ij) = e∗ii ∧ e∗ij + e∗ij ∧ e∗jj +
∑

i<k<j

2e∗ik ∧ e∗kj i < j,

ψ(e∗ij) = e∗ij ∧ e∗ii + e∗jj ∧ e∗ij +
∑

j<k<i

2e∗kj ∧ e∗ik i > j.

Example 1.7. Let b denote the Lie ideal k(
∑

i e
∗
ii) of (m/m2)∗ in Example

1.6. Then b is a Lie bialgebra ideal since ψ(b) ⊆ (m/m2)∗ ⊗ b + b ⊗ (m/m2)∗

and thus (m/m2)∗/b is also a Lie bialgebra. In fact, it is checked immediately
that the Lie bialgebra (m/m2)∗/b is isomorphic to the well-known Lie bialgebra
(sln(k), δ), where δ : sln(k) −→ sln(k) ∧ sln(k) is given by

(6) δ(hi) = 0, δ(Ei,i+1) = hi ∧ Ei,i+1, δ(Ei+1,i) = hi ∧ Ei+1,i,

where Eij is the n×n-matrix with 0 for all positions except (i, j)-position and
1 for (i, j)-position and hi = Eii −Ei+1,i+1 for i = 1, . . . , n− 1 (The cobracket
δ is uniquely determined by (6) since δ is a 1-cocycle and sln(k) is generated
by hi, Ei,i+1, Ei+1,i, i = 1, . . . , n − 1). The cobracket δ in (6) is the standard
Lie bialgebra structure in sln(k) (see [2, 1.3.8]).
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2. Application

2.1. Let A = (A, ι,m, ε,∆) be a bialgebra. Note that the dual A∗ is an A-A
bimodule:

(7) (aϕb)(x) = ϕ(bxa), ϕ ∈ A∗, a, b, x ∈ A.
For a left A-module M , the dual space M∗ is a right A-module with structure

(fa)(x) = f(ax), a ∈ A, f ∈M∗, x ∈M.

Let C be a class of finite dimensional left A-modules which is closed under
finite direct sums and finite tensor products. For any M ∈ C, f ∈ M∗ and
v ∈M , the coordinate function cMf,v ∈ A∗ is defined by

cMf,v(x) = f(xv), x ∈ A.
Then cMf,v is an element of the restricted dual A◦ of A since the annihilator I of
M is an ideal of A such that the dimension of A/I is finite and cMf,v(I) = 0. It
is well-known that the vector space A(C) spanned by all coordinate functions
cMf,v,M ∈ C, f ∈M∗, v ∈M , is a sub-bialgebra of A◦ with structure

(8)
cMf,v + cNg,w = cM⊕N

(f,g),(v,w), cMf,vc
N
g,w = cM⊗N

f⊗g,v⊗w,

∆(cMf,v) =
∑

i c
M
f,vi

⊗ cMfi,v
, ε(cMf,v) = f(v),

where {vi} and {fi} are dual bases for M and M∗ (see [1, I.7]). Moreover if
A is a Hopf algebra and C is closed under duals, then A(C) is a Hopf algebra
with antipode S defined by

S(cMf,v) = cM
∗

v,f , M ∈ C, f ∈M∗, v ∈M.

Observe that A(C) has a left and right A-action induced by (7):

(9) a · cMf,v = cMf,av, cMf,v · a = cMfa,v, a ∈ A.
2.2. Let (g, ψ) be a Lie bialgebra and let ∆ be the comultiplication of U(g).
The cobracket ψ is extended uniquely to a ∆-derivation ψ from U(g) into
U(g)⊗ U(g). That is,

ψ : U(g) −→ U(g)⊗ U(g)

is a k-linear map such that ψ|g = ψ and ψ(xy) = ψ(x)∆(y) + ∆(x)ψ(y) for all
x, y ∈ U(g).

Let (g, ψ) be a coboundary Lie bialgebra such that the cobracket ψ deter-
mined by a classical r-matrix r =

∑
i ai ⊗ bi. That is, r satisfies the modified

classical Yang-Baxter equation and ψ is defined by

ψ(x) = x · r =
∑

i

[x, ai]⊗ bi + ai ⊗ [x, bi] = [∆(x), r]U(g)⊗U(g)
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for all x ∈ g (refer to [2, 2.1] and [9, §4.1] for the definition of a coboundary
Lie bialgebra). Then the extension map ψ of ψ to U(g) is given by ψ(x) =
[∆(x), r]U(g)⊗U(g) for all x ∈ U(g).

Theorem. Let (g, ψ) be a coboundary Lie bialgebra such that the cobracket ψ
is determined by a classical r-matrix r. Fix a class C of finite dimensional
left U(g)-modules which is closed under finite direct sums and finite tensor
products. Denote by A(C) the vector space spanned by all coordinate functions
cMf,v,M ∈ C, f ∈ M∗, v ∈ M . Then A(C) is a Poisson bialgebra with Poisson
bracket

(10) {cMf,v, c
N
g,w}(x) = 〈ψ(x), cMf,v ⊗ cNg,w〉

for all x ∈ U(g).

Remark. Observe that, in the above theorem, A(C) is a sub-Poisson bialgebra
of the restricted dual U(g)◦ and we obtain a Lie bialgebra ((m/m2)∗,m/m2) by
applying 1.5 to A(C), where m is the kernel of the counit in A(C).
Proof of Theorem. We have already known that A(C) is a sub-bialgebra of the
restricted dual U(g)◦ with structure (8) by 2.1.

Denote r =
∑

i ai ⊗ bi. Then

ψ(x) = [∆(x), r]U(g)⊗U(g) =
∑

(x)

∑

i

(x′ai ⊗ x′′bi − aix
′ ⊗ bix

′′)

for all x ∈ U(g), thus

{cMf,v, c
N
g,w}(x) =

∑

i

∑

(x)

cMf,v(x′ai)cNg,w(x′′bi)−
∑

i

∑

(x)

cMf,v(aix
′)cNg,w(bix′′)

=
∑

i

(cMf,aivc
N
g,biw)(x)−

∑

i

(cMfai,vc
N
gbi,w)(x).

Hence

(11) {cMf,v, c
N
g,w} =

∑

i

(cMf,aivc
N
g,biw)−

∑

i

(cMfai,vc
N
gbi,w) ∈ A(C),

that is, the Poisson bracket (10) is well-defined.
Let τ : U(g)⊗U(g) −→ U(g)⊗U(g) be the flip. Since U(g) is cocommutative

and τ(r) = −r, we have that τψ(x) = −ψ(x) for all x ∈ U(g), thus we have
immediately that {cMf,v, c

N
g,w} = −{cNg,w, c

M
f,v} for all cMf,v, c

N
g,w ∈ A(C) by (10).

For distinct numbers s, t = 1, 2, 3, denote by rst ∈ g⊗g⊗g the element with
ai for s-component, bi for t-component and 1 for the other component. For
instance, r12 =

∑
ai ⊗ bi ⊗ 1 and r31 =

∑
bi ⊗ 1 ⊗ ai. Note that rst = −rts

for all distinct numbers s, t = 1, 2, 3, by the skew symmetry of r. Since ∆(a) =



714 SEI-QWON OH AND EUN-HEE CHO

a⊗ 1 + 1⊗ a for all a ∈ g, we have

{{cMf,v, c
N
g,w}, cLh,u}(x) = 〈∆2(x)(r13 + r23)r12, cMf,v ⊗ cNg,w ⊗ cLh,u〉

− 〈r12∆2(x)(r13 + r23), cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈(r13 + r23)∆2(x)r12, cMf,v ⊗ cNg,w ⊗ cLh,u〉
+ 〈r12(r13 + r23)∆2(x), cMf,v ⊗ cNg,w ⊗ cLh,u〉

for x ∈ U(g), where ∆2 = (∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆, by (10). Hence, by
rst = −rts for all s, t = 1, 2, 3 and the coassociativity of ∆, we have that

({{cMf,v, c
N
g,w}, cLh,u}+ {{cNg,w, c

L
h,u}, cMf,v}+ {{cLh,u, c

M
f,v}, cNg,w})(x)

= 〈∆2(x)(r13 + r23)r12, cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈r12∆2(x)(r13 + r23), cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈(r13 + r23)∆2(x)r12, cMf,v ⊗ cNg,w ⊗ cLh,u〉
+ 〈r12(r13 + r23)∆2(x), cMf,v ⊗ cNg,w ⊗ cLh,u〉
+ 〈∆2(x)(r21 + r31)r23, cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈r23∆2(x)(r21 + r31), cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈(r21 + r31)∆2(x)r23, cMf,v ⊗ cNg,w ⊗ cLh,u〉
+ 〈r23(r21 + r31)∆2(x), cMf,v ⊗ cNg,w ⊗ cLh,u〉
+ 〈∆2(x)(r32 + r12)r31, cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈r31∆2(x)(r32 + r12), cMf,v ⊗ cNg,w ⊗ cLh,u〉
− 〈(r32 + r12)∆2(x)r31, cMf,v ⊗ cNg,w ⊗ cLh,u〉
+ 〈r31(r32 + r12)∆2(x), cMf,v ⊗ cNg,w ⊗ cLh,u〉

= 〈([r12, r13] + [r12, r23] + [r13, r23])∆2(x), cMf,v ⊗ cNg,w ⊗ cLh,u)〉
− 〈∆2(x)([r12, r13] + [r12, r23] + [r13, r23]), cMf,v ⊗ cNg,w ⊗ cLh,u)〉

= 0

for any cMf,v, c
N
g,w, c

L
h,u ∈ A(C) and x ∈ U(g) since

[r12, r13] + [r12, r23] + [r13, r23]

= (r12r13 − r13r12) + (r12r23 − r23r12) + (r13r23 − r23r13)

=
∑

i,j

[ai, aj ]⊗ bi ⊗ bj +
∑

i,j

ai ⊗ [bi, aj ]⊗ bj +
∑

i,j

ai ⊗ aj ⊗ [bi, bj ]

is g-invariant. Hence the Poisson bracket (10) satisfies the Jacobi identity.
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By (11), we have

{cMf,v, c
N
g,wc

L
h,u} =

∑

i

cMf,aiv(cNg,biwc
L
h,u + cNg,wc

L
h,biu)

−
∑

i

cMfai,v(cNgbi,wc
L
h,u + cNg,wc

L
hbi,u)

= {cMf,v, c
N
g,w}cLh,u + cNg,w{cMf,v, c

L
h,u}.

It follows that the Poisson bracket (10) satisfies the Leibniz rule.
Let us prove that ∆({cMf,v, c

N
g,w}) = {∆(cMf,v),∆(cNg,w)} for all elements cMf,v,

cNg,w ∈ A(C). Note that ∆(cMf,v) =
∑

j c
M
f,vj

⊗ cMfj ,v,∆(cNg,w) =
∑

k c
N
g,wk

⊗ cNgk,w,
where {vj}, {fj} are dual bases for M and M∗ and {wk}, {gk} are dual bases
for N and N∗. Now, for any x, y ∈ U(g),

∆({cMf,v, c
N
g,w})(x⊗ y) = 〈ψ(xy), cMf,v ⊗ cNg,w〉

= 〈ψ(x)∆(y), cMf,v ⊗ cNg,w〉+ 〈∆(x)ψ(y), cMf,v ⊗ cNg,w〉
=

∑

j,k

〈ψ(x), cMf,vj
⊗ cNg,wk

〉〈∆(y), cMfj ,v ⊗ cNgk,w〉

+
∑

j,k

〈∆(x), cMf,vj
⊗ cNg,wk

〉〈ψ(y), cMfj ,v ⊗ cNgk,w〉

=
∑

j,k

({cMf,vj
, cNg,wk

} ⊗ cMfj ,vc
N
gk,w)(x⊗ y)

+
∑

j,k

(cMf,vj
cNg,wk

⊗ {cMfj ,v, c
N
gk,w})(x⊗ y)

= {∆(cMf,v),∆(cNg,w)}(x⊗ y).

Hence we have ∆({cMf,v, c
N
g,w}) = {∆(cMf,v),∆(cNg,w)} for all elements cMf,v, c

N
g,w ∈

A(C). This completes the proof. ¤

Proposition 2.3. Let (g, ψ) be a coboundary Lie bialgebra such that g is con-
nected and simply connected and let C be the set of all finite dimensional left
U(g)-modules. Then A(C) is the restricted dual U(g)◦. Moreover the given Lie
bialgebra (g, ψ) is isomorphic to ((m/m2)∗,m/m2), where m is the kernel of the
counit ε of A(C).
Proof. Note that the set of all finite dimensional left U(g)-modules is closed
under finite direct sums and finite tensor products. Since every element of
the restricted dual U(g)◦ is represented by a coordinate function cMf,v for some
finite dimensional left U(g)-module M , we have immediately that A(C) is the
restricted dual U(g)◦. Moreover ((m/m2)∗,m/m2) is a Lie bialgebra by 2.2 and
1.5, and g = (m/m2)∗ by [7, 7.11]. Thus g∗ is equal to m/m2 as a Lie algebra
by (3) and (10). It follows that the Lie bialgebra ((m/m2)∗,m/m2) is equal to
(g, ψ) = (g, g∗). ¤
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Example 2.4. In the symplectic Lie algebra sp4, set

h1 = E11 − E22 − E33 + E44, h2 = E22 − E44,
e1 = E12 − E43, e2 = E24, e3 = E14 + E23, e4 = E13,
f1 = E21 − E34, f2 = E42, f3 = E41 + E32, f4 = E31

(see [5, 8.3] for sp4). Let H be the subspace of sp4 spanned by h1, h2 and let
α1, α2 ∈ H∗ be defined by

α1(h1) = 2, α2(h1) = −2,
α1(h2) = −1, α2(h2) = 2.

Then e1, e2, e3, e4, f1, f2, f3, f4 are weight vectors with weights

wt(e1) = α1, wt(e2) = α2, wt(e3) = α1 + α2, wt(e4) = 2α1 + α2,
wt(f1) = −α1, wt(f2) = −α2, wt(f3) = −(α1 + α2), wt(f4) = −(2α1 + α2).

Hence α1, α2 are positive simple roots. It is well-known that

r = e1 ∧ f1 + 2e2 ∧ f2 + e3 ∧ f3 + 2e4 ∧ f4 ∈ sp4 ∧ sp4

satisfies the modified classical Yang-Baxter equation and gives the standard
Lie bialgebra structure ψ in sp4 such that

ψ(h1) = 0, ψ(h2) = 0,
ψ(e1) = e1 ∧ h1, ψ(e2) = 2e2 ∧ h2,
ψ(e3) = e3 ∧ h1 + 2e3 ∧ h2 − 4e1 ∧ e2, ψ(e4) = 2e4 ∧ h1 + 2e4 ∧ h2 − 2e1 ∧ e3,
ψ(f1) = f1 ∧ h1, ψ(f2) = 2f2 ∧ h2,
ψ(f3) = f3 ∧ h1 + 2f3 ∧ h2 − 4f1 ∧ f2, ψ(f4) = 2f4 ∧ h1 + 2f4 ∧ h2 − 2f1 ∧ f3

(see [9, Exercise 4.1.11]).

The weight lattice P in sp4 is a free abelian group with basis consisting
of the fundamental dominant integral weights λ1, λ2, where λi(hj) = δij for
i, j = 1, 2. Hence

α1 = 2λ1 − λ2, α2 = −2λ1 + 2λ2.

The natural sp4-module V = k4 is an irreducible highest weight module with
highest weight λ1. In fact, set

v1 =




1
0
0
0


 , v2 =




0
1
0
0


 , v3 =




0
0
0
1


 , v4 =




0
0
−1
0


 ∈ V.

Then v1 is a highest weight vector with highest weight λ1 and

v1 ∈ Vλ1 , v2 = f1v1 ∈ V−λ1+λ2 , v3 = f2v2 ∈ Vλ1−λ2 , v4 = f1v3 ∈ V−λ1 .

(v1
f1−→ v2

f2−→ v3
f1−→ v4)

Here we simply write cf,v for cVf,v, v ∈ V, f ∈ V ∗. Observe that
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v∗1 = (V ∗)−λ1 , v
∗
2 = v∗1e1 ∈ (V ∗)λ1−λ2 , v

∗
3 = v∗2e2 ∈ (V ∗)−λ1+λ2 , v

∗
4 = v∗3e1 ∈ (V ∗)λ1

(v∗1
e1−→ v∗2

e2−→ v∗3
e1−→ v∗4)

and
C = {k, V n, V ⊗n | n = 1, 2, . . .}

is a class of U(sp4)-modules closed under finite direct sums and finite ten-
sor products. Thus A(C) is a sub-Poisson bialgebra of the Poisson bialgebra
U(sp4)◦ by 2.2. Set

h∗1 = cv∗1 ,v1 − 1, h∗2 = cv∗2 ,v2 + cv∗1 ,v1 − 2,
x∗1 = cv∗1 ,v2 , x∗2 = cv∗1 ,v3 , y∗1 = cv∗2 ,v1 , y∗2 = cv∗3 ,v1

in m/m2, where m = ker ε. Let S be the antipode of U(sp4)◦. Since V ∗ ∼= V as
a U(sp4)-module and m ◦ (idU(sp4)

∗ ⊗ S) ◦∆ = ε1, we have

cv∗3 ,v4 = −cv∗1 ,v2 , cv∗2 ,v4 = −cv∗1 ,v3 , cv∗2 ,v3 = 0, cv∗1 ,v4 = 0,
cv∗4 ,v3 = −cv∗2 ,v1 , cv∗3 ,v1 = −cv∗4 ,v2 , cv∗3 ,v2 = 0, cv∗4 ,v1 = 0.

It follows that m/m2 is a 6-dimensional Lie algebra with structure

[h∗1, h
∗
2] = 0, [h∗1, x

∗
1] = −x∗1, [h∗1, x

∗
2] = −x∗2,

[h∗1, y
∗
1 ] = −y∗1 , [h∗1, y

∗
2 ] = −y∗2 , [h∗2, x

∗
1] = 0,

[h∗2, x
∗
2] = −2x∗2, [h∗2, y

∗
1 ] = 0, [h∗2, y

∗
2 ] = −2y∗2 ,

[x∗1, x
∗
2] = 0, [y∗1 , y

∗
2 ] = 0, [x∗i , y

∗
j ] = 0 (i, j = 1, 2),

where [h∗1, h
∗
2] = {cv∗1 ,v1 − 1, cv∗2 ,v2 + cv∗1 ,v1 − 2} ∈ m/m2, etc. and the dual Lie

algebra (m/m2)∗ is a six dimensional Lie algebra with the following structure

[h1, h2] = 0, [h1, x1] = 2x1, [h1, x2] = 0,
[h1, y1] = −2y1, [h1, y2] = 0, [h2, x1] = −x1,
[h2, x2] = x2, [h2, y1] = y1, [h2, y2] = −y2,
[x1, x2] = 0, [y1, y2] = 0, [x1, y1] = h1,
[x1, y2] = 0, [x2, y1] = 0, [x2, y2] = h1 + 2h2.

Hence the Lie algebra (m/m2)∗ is a Lie bialgebra with cobracket ψ satisfying

ψ(h1) = 0, ψ(h2) = 0,
ψ(x1) = x1 ∧ h1, ψ(x2) = x2 ∧ h1 + 2x2 ∧ h2,
ψ(y1) = y1 ∧ h1, ψ(y2) = y2 ∧ h1 + 2y2 ∧ h2.
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