Colorless and Transparent Polyimide Films from Poly(amic acid)s with Cross-linkable Anhydride End

가교 반응이 가능한 말단 무수물을 이용한 무색투명한 폴리이미드 필름

  • Min, Ung-Ki (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 민웅기 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Received : 2010.03.11
  • Accepted : 2010.07.05
  • Published : 2010.11.25

Abstract

Crosslinked PI films were synthesized from 4,4'-(hexafluoro isopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy) phenyl] sulfone(BAPS) with various ratios of the reactive monomer cis-4-cyclohexene-1,2-dicarboxylic anhydride(CDBA). We prepared crosslinked poly(amic acid) (PAA) using a 0.1 wt% Grubbs catalyst as a crosslinking agent. The crosslinked PAA was heat-treated at different temperatures to give PI films. The thermo-mechanical properties and optical transparency of the PI films were investigated. The thermal properties of the PI films were examined using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermo-mechanical analysis(TMA), and universal tensile machine(UTM), and their optical transparencies were investigated using UV-vis. spectrophotometry. The thermomechanical properties of the PI films improved with increasing CDBA content. However, the optical transparency of the PI films decreased slightly with increasing CDBA content.

4,4'-(Hexafluoroisopropylidene)diphthalic anhydride(6FDA)와 bis[4-(3-amino phenoxy)phenyl] sulfone(BAPS)의 조성에 cis-4-cyclohexene-1,2-dicarboxylic anhydride(CDBA)를 다양한 몰%로 사용하여 사슬 말단에 가교 반응이 된 폴리이미드(PI)를 얻었다. Grubbs 촉매 0.1 wt%를 사용하여 가교된 폴리아믹산(poly(amic acid), PAA)을 합성한 후에 PAA를 다양한 온도에서 열처리를 통해 가교된 PI 필름을 합성하였다. 제조된 필름의 열적-기계적 성질은 퓨리에 변환 적외선 분광기(FTIR), 시차주사 열량계(DSC), 열중량 분석기(TGA), 열기계 분석기(TMA), 만능인장 시험기(UTM) 등을 사용하여 측정하였고, 색차계(spectrophotometer)와 자외선-가시광선 흡광도기(UV-Vis. spectrometer)를 이용하여 광학적 특성을 확인하였다. CDBA의 몰%가 증가함에 따라 열적 기계적 성질은 증가하였지만 광학적 투명도는 이와는 반대로 감소하였다.

Keywords

References

  1. M. B. Saeed and M. S. Zhan, Eur. Polym. J., 42, 1844 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.004
  2. X. Fang, Z. W. Yang, L. Gao, Q. Li, and M. Ding, Polymer, 44, 2641 (2003). https://doi.org/10.1016/S0032-3861(03)00181-2
  3. H. Wei, X. Fang, Y. Han, B. Hu, and Q. Yan, Eur. Polym. J., 46, 246 (2010). https://doi.org/10.1016/j.eurpolymj.2009.10.025
  4. H. Li, J. Liu, K. Wang, L. Fan, and S. Yang, Polymer, 47, 1443 (2006). https://doi.org/10.1016/j.polymer.2005.12.074
  5. Z. M. Liang, J. Yin, J.-H. Wu, Z. -H. Wu, Z. X. Qiu, and F.-F. He, Eur. Polym. J., 40, 307 (2004). https://doi.org/10.1016/j.eurpolymj.2003.09.020
  6. S.-H. Hsiao and Y. -J. Chen, Eur. Polym. J., 38, 815 (2002). https://doi.org/10.1016/S0014-3057(01)00229-4
  7. Y. -H. Yu, J. -M. Yeh, S. -J. Liou, C. -L. Chen, D. J. Liaw, and H. Y. Lu, J. Appl. Polym. Sci., 92, 3573 (2004). https://doi.org/10.1002/app.20400
  8. J. Cho, C. S. Ha, S. Ando, W. K. Kim, C. H. Park, and K. Lee, Adv. Mater., 14, 1275 (2002). https://doi.org/10.1002/1521-4095(20020916)14:18<1275::AID-ADMA1275>3.0.CO;2-Y
  9. D. H. Lee, S. H. Shim, J. S. Choi, and K.-B. Yoon, Appl. Surf. Sci., 254, 4650 (2008). https://doi.org/10.1016/j.apsusc.2008.01.078
  10. M. H. Yi, Polym. Sci. Technol., 14, 580 (2003).
  11. J.-G. Liu, X.-J. Zhao, H.-S. Li. Fan, and S.-Y. Yang, High Perform. Polym., 18, 851 (2006). https://doi.org/10.1177/0954008306063639
  12. G. Maier, Prog. Polym. Sci., 26, 3 (2001). https://doi.org/10.1016/S0079-6700(00)00043-5
  13. H. L. Tyan, C. M. Leu, and K. H. Wei, Chem. Mater., 12, 222 (2001).
  14. M. Hasegawa and K. Horie, Prog. Polym. Sci., 26, 259 (2001). https://doi.org/10.1016/S0079-6700(00)00042-3
  15. C.-P. Yang, Y.-Y. Su, and Y.-C. Chen, J. Appl. Polym. Sci., 102, 4101 (2006). https://doi.org/10.1002/app.24118
  16. Y.-Y. Chen, C.-P, Yang, and S.-H. Hsiao, Eur. Polym. J., 42, 1705 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.021
  17. W. B. Jang, D. Y. Shin, S. G. Choi, S. G. Park, and H. S. Han, Polymer, 48, 2130 (2007). https://doi.org/10.1016/j.polymer.2007.02.023
  18. T. Matsumoto and T. Kurosaki, Macromolecules., 30, 993 (1997). https://doi.org/10.1021/ma961307e
  19. C. -P. Yang and Y. Y. Su, Polymer, 46, 5797 (2005). https://doi.org/10.1016/j.polymer.2005.04.076
  20. T. Matsumoto, Macromoecules, 32, 4933 (1999). https://doi.org/10.1021/ma9903862
  21. B. W. Chun, Polymer, 35, 4203 (1994). https://doi.org/10.1016/0032-3861(94)90597-5
  22. C.-Y. Yang, S. L.-C Hsu, and J. S. Chen, J. Appl. Polym. Sci., 98, 2064 (2005). https://doi.org/10.1002/app.22410
  23. L. Jin, T. Agag, and H. Ishida, Eur. Polym. J., 46, 354 (2010). https://doi.org/10.1016/j.eurpolymj.2009.09.013
  24. S. Y. Yang, C. E. Park, and M. S. Jung, Polymer, 44, 3243 (2003). https://doi.org/10.1016/S0032-3861(03)00273-8
  25. T. Sutthasupa, K. Terada, F. Sanda, and T. Masuda, J. Polym. Sci. Part A: Polym. Chem., 44, 5337 (2006). https://doi.org/10.1002/pola.21580
  26. T. Sasaki, H. Moriuchi, S. Yano, and R. Yokota, Polymer, 46, 6968 (2005). https://doi.org/10.1016/j.polymer.2005.06.052
  27. J. Fan, X. Hu, and C. Y. Yue, Polym. Int., 52, 15 (2003). https://doi.org/10.1002/pi.962
  28. J. Y. Lee and J. Jang, Polym. Bull., 38, 447 (1997). https://doi.org/10.1007/s002890050072
  29. J. Y. Lee and J. Jang, Polymer, 47, 3036 (2006). https://doi.org/10.1016/j.polymer.2006.03.009
  30. M.-S. Jung, W. J. Joo, B. K. Choi, and H. T. Jung, Polymer, 47, 6652 (2006). https://doi.org/10.1016/j.polymer.2006.06.039
  31. W.-Y. Chiang and C.-D. Tsai, Macromol. Mater. Eng., 260, 11 (1998).
  32. T. Agag and T. Takeichi, Polymer, 40, 6557 (1999). https://doi.org/10.1016/S0032-3861(99)00026-9
  33. T. Takeichi, M. Tanikawa, and M. Zuo, J. Polym. Sci. Part A: Polym. Chem., 35, 2395 (1997). https://doi.org/10.1002/(SICI)1099-0518(19970915)35:12<2395::AID-POLA9>3.0.CO;2-U
  34. M.-S. Jung, W. J. Joo, O. Y. Kwon, B. H. Sohn, and H. T. Jung, J. Appl. Polym. Sci., 102, 2180 (2006). https://doi.org/10.1002/app.24263