전자선 조사로 개질된 PLA의 유변학적 물성

Rheological Properties of Poly(lactic acid) Modified by Electron Beam Irradiation

  • 신부영 (영남대학교 디스플레이화학공학부) ;
  • 김봉식 (영남대학교 디스플레이화학공학부)
  • Shin, Boo-Young (School of Display and Chemical Engineering, Yeungnam University) ;
  • Kim, Bong-Shik (School of Display and Chemical Engineering, Yeungnam University)
  • 투고 : 2010.04.12
  • 심사 : 2010.05.17
  • 발행 : 2010.09.25

초록

본 연구에서는 폴리락트산(PLA)의 용융강도를 높이기 위하여 PLA에 글리시딜 메타크릴레이트(GMA)를 PLA에 첨가한 후 전자선을 조사하여 PLA를 개질하였다. GMA는 5 phr(parts per hundred parts of resin)로 고정하고 전자선 조사량을 변화시키며 개질 PLA을 제조하였으며, 이후 열적, 유변학적 특성 및 젤화도를 조사하였다. 주파수 0.1 rad/s에서 조사량 300 kGy로 개질된 PLA와 순수 PLA의 유변학적 물성을 서로 비교해보면 복합점도는 약 210배, 탄성률은 약 14500배 상승하는 예외적으로 아주 큰 변화를 보였다. 젤화도의 결과로 조사량 200 kGy 이하로 조사된 시료에서 일어난 분자반응은 가교화 반응보다는 가지화 반응이 우세하다는 것을 알 수 있었다.

Poly(lactic acid)(PLA) has been modified by electron radiation in the presence of 5 phr glycidyl methacrylate (GMA) to enhance the melt strength of PLA. The modified PLA was prepared by varying the dose of irradiation and was characterized by observing the thermal properties, the melt viscoelastic properties and the gel fraction. The irradiated PLA with 300 kGy in the presence of 5 phr GMA showed drastically improved complex viscosity and storage modulus properties: a complex viscosity of about 210 times higher and a storage modulus of 14500 times higher than those of virgin PLA when measured at a frequency of 0.1 rad/s. Gel fraction study revealed that a branching reaction was more dominant than a crosslinking reaction when the PLA was irradiated with less than 200 kGy.

키워드

과제정보

연구 과제 주관 기관 : 영남대학교

참고문헌

  1. W. J. Kim, J. H. Kim, S. H. Kim, and Y. H. Kim, Polymer(Korea), 24, 431 (2000).
  2. S. H. Lee, D. Kim. J. H. Kim, D. H. Lee, S. J. Shim, J. D. Nam, H. Kye, and Y. Lee, Polymer(Korea), 28, 519 (2004).
  3. J. H. Cho, Y. Chang, I. Noh, C. Kim, S. H. Kim, and Y. H. Kim, Polymer(Korea), 21, 879 (1997).
  4. S. W. Chun, S. H. Kim, Y. H. Kim, and H. J. Kang, Polymer(Korea), 24, 333 (2000).
  5. J. S. Lee, D. J. Choo, S. H. Kim, and Y. H. Kim, Polymer(Korea), 22, 880 (1998).
  6. A. Södergárd, M. Niemi, J. F. Selin, and H. Näsman, Ind. Eng. Chem. Res., 34, 1203 (1995). https://doi.org/10.1021/ie00043a024
  7. J. Kim, H. J. Kang, and K. H. Seo, J. Appl. Polym. Sci., 81, 637 (2001). https://doi.org/10.1002/app.1479
  8. Y. Di, S. Iannace, E. D. Maio, and L. Niolais, Macromol. Mater. Eng., 290, 1083 (2005). https://doi.org/10.1002/mame.200500115
  9. A. H. Hogt, J. Meijer, and J. Jelenic, "Modification of Polypropylene by Organic Peroxides", in Reactive Modifiers for Polymers, S. Al-Malaik, Editor, Blackie Academic and Professional, Chapman and Hall, London, p 84 (1996).
  10. M. Sugimoto, T. Tanaka, Y. Masubuchi, and J. Takimoto, J. Appl. Polym. Sci., 73, 1493 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1493::AID-APP18>3.0.CO;2-2
  11. D. H. Han, J. H. Jang, H. Y. Kim, B. N. Kim, and B. Y. Shin, Polym. Eng. Sci., 46, 431 (2006). https://doi.org/10.1002/pen.20470
  12. D. H. Han, S. H. Shin, and S. Petrov, Radiat. Phys. Chem., 69, 239 (2004). https://doi.org/10.1016/S0969-806X(03)00458-4
  13. K. R. Park and Y. C. Nho, Polymer(Korea), 29, 91 (2005).
  14. H. C. Pyun and Y. C. Nho, Polymer(Korea), 15, 425 (1991).
  15. I. H. Cho, P. H. Kang, Y. M. Lim, J. H. Choi, T. S. Hwang, and Y. C. Nho, Polymer(Korea), 31, 512 (2007).
  16. B. S. Ko, J. Shin, J. Y. Sohn, Y. C. Nho, and P. H. Kang, Polymer(Korea), 33, 268 (2009).
  17. B. Y. Shin, K. S. Kang, G. S. Jo, D. H. Han, J. S. Song, S. I. Lee, T. J. Lee, and B. S. Kim, Polymer(Korea), 31, 269 (2007).
  18. M. C. Gupta and V. G. Deshmukh, Polymer, 24, 827 (1983). https://doi.org/10.1016/0032-3861(83)90198-2
  19. K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988). https://doi.org/10.1016/0032-3861(88)90116-4
  20. J. W. Park and S. S. Im, Polym. Eng. Sci., 40, 2539 (2000). https://doi.org/10.1002/pen.11384
  21. L. V. Labrecque, R. A. Kumar, V. Dave, R. A. Gross, and S. P. McCarthy, J. Appl. Polym. Sci., 66, 1507 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0
  22. E. R. Harrell and N. Nakajima, J. Appl. Polym. Sci., 29, 995 (1984). https://doi.org/10.1002/app.1984.070290327
  23. E. S. Kim, B. C. Kim, and S. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 42, 939 (2004). https://doi.org/10.1002/polb.10685
  24. M. R. Cleland, L. A. Park, and S. Cheng, Nucl. Instrum. Methods Phys. Res., B208, 66 (2003).
  25. U. Yilmazer, M. Xanthos, G. Bayram, and V. Tan, J. Appl. Polym. Sci., 75, 1371 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1371::AID-APP8>3.0.CO;2-5
  26. Y. Di, S. Iannace, E. D. Maio, and L. Nicolais, J. Polym. Sci. Part B: Polym. Phys., 43, 689 (2005). https://doi.org/10.1002/polb.20366
  27. M. Xanthos, U. Yilmazer, S. K. Dey, and J. Quintans, Polym. Eng. Sci., 40, 554 (2000). https://doi.org/10.1002/pen.11186
  28. H. G. Chae, B. C. Kim, S. S. Im, and Y. K. Han, Polym. Eng. Sci., 41, 1133 (2001). https://doi.org/10.1002/pen.10814
  29. V. C. Barroso and J. M. Maia, Polylm. Eng. Sci., 45, 984 (2005). https://doi.org/10.1002/pen.20356
  30. B. J. Jeong and M. Xanthos, Polym. Eng. Sci., 47, 244 (2007). https://doi.org/10.1002/pen.20699