고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산

Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis

  • 엄효상 (금오공과대학교 고분자공학과) ;
  • 박일현 (금오공과대학교 고분자공학과)
  • Eom, Hyo-Sang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Il-Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2010.04.05
  • 심사 : 2010.05.01
  • 발행 : 2010.09.25

초록

고검화도(98%이상)의 폴리(비닐 알코올)(PVA)를 디메틸설폭사이드(DMSO) 용매에 녹인 뒤 PVA 준희박 용액 대에서 농도 $C{\simeq}0.14\;g/mL$까지 점성도를 측정하였으며, 이 시스템을 매트릭스로 하여 폴리스티렌(PS) 라텍스 입자의 확산운동 지연을 동적 광산란법으로 조사하였다. PVA/DMSO계의 점성도를 고유점성도 $[{\eta}]$로 스케일된 환산농도 $C[{\eta}]$에 대하여 도시하였을 때 C$[{\eta}]$ >2에서는 분자량 의존성이 강하게 나타났으며, 그 원인은 PVA 용액 내에 존재하는 불균일 영역때문인 것으로 추정하였다. 그러나 매트릭스 내에서 탐침입자의 확산운동은 모든 측정농도에서 단일모드로 관찰되었고, 용액상 및 용매상에서의 확산계수의 비인 D/Do를 $C[{\eta}]$로 도시할 때 전체 농도 범위에서 분자량 의존성은 전혀 나타나지 않았으나 신장지수함수의 적용 한계는 C$[{\eta}]$ >2.5인 것으로 관찰되었다.

Poly(vinyl alcohol)(PVA) with high degree of hydrolysis of above 98% was dissolved in dimethyl sulfoxide(DMSO), and the shear viscosity was measured up to $C{\simeq}0.14\;g/mL$ in the semi-dilute solution regime. Next, as probe particle, polystyrene(PS) latex was introduced into this matrix system and its delayed diffusion due to polymer concentration was investigated by means of dynamic light scattering. When the solution viscosity of PVA/DMSO was plotted against the reduced concentration $C[{\eta}]$, which is scaled by the intrinsic viscosity, the molecular weight dependence was strongly appeared at C$[{\eta}]$ >2. Some heterogeneties in polymer solution were considered as its source. Contrary, the diffusion of probe particle in the matrix solution was observed as a single mode motion at whole concentration range but its ratio of its diffusion coefficient at solution to that at solvent, D/Do did not show any molecular weight dependence at all. However, the application limit of the stretched exponential function was disclosed at C$[{\eta}]$ >2.5.

키워드

과제정보

연구 과제 주관 기관 : 금오공과대학교

참고문헌

  1. G. D. J. Phillies, G. S. Ullmann, and K. Ullmann, J. Chem. Phys., 82, 5242 (1985). https://doi.org/10.1063/1.448969
  2. G. D. J. Phillies, Macromolecules, 19, 2367 (1986). https://doi.org/10.1021/ma00163a006
  3. G. D. J. Phillies, Macromolecules, 21, 3101 (1988). https://doi.org/10.1021/ma00188a031
  4. G. D. J. Phillies and P. Peczak, Macromolecules, 21, 214 (1988). https://doi.org/10.1021/ma00179a041
  5. L. M. Wheeler and T. P. Lodge, Macromolecules, 22, 3399 (1989). https://doi.org/10.1021/ma00198a035
  6. G. D. J. Phillies, J. Phys. Chem., 96, 10061 (1992). https://doi.org/10.1021/j100203a086
  7. G. D. J. Phillies and D. Clomenil, Macromolecules, 26, 167 (1993). https://doi.org/10.1021/ma00053a025
  8. C. N. Onyenemezu, D. Gold, M. Roman, and W. G. Miller, Macromolecules, 26, 3833 (1993). https://doi.org/10.1021/ma00067a018
  9. H. S. Park, J. Sung, and T. Chang, Macromolecules, 29, 3216 (1996). https://doi.org/10.1021/ma951666u
  10. D. Gold, C. N. Onyenemezu, and W. G. Miller, Macromolecules, 29 5700 (1996). https://doi.org/10.1021/ma951822x
  11. K. L. Ngai and G. D. Phillies, J. Chem. Phys., 105, 8385 (1996). https://doi.org/10.1063/1.472693
  12. G. D. Phillies, M. Lacroix, and J. Yambert, J. Phys. Chem. B, 101, 5124 (1997). https://doi.org/10.1021/jp970534v
  13. K. A. Streletzky and G. D. J. Phillies, Macromolecules, 32, 145 (1999). https://doi.org/10.1021/ma981156a
  14. K. E. Bremmell, N. Wissenden, and D. E. Dunstan, Adv. Colloid Interface Sci., 89-90, 141 (2001). https://doi.org/10.1016/S0001-8686(00)00059-2
  15. K. E. Bremmell and D. E. Dunstan, Macromolecules, 35, 1994 (2002). https://doi.org/10.1021/ma010051w
  16. S. S. Jena and V. A. Bloomfield, Macromolecules, 38, 10551 (2005). https://doi.org/10.1021/ma0521304
  17. C. Yang, B. Meng, X. Liu, M. Chen, Y. Hua, and Z. Ni, Polymer, 47, 8044 (2006). https://doi.org/10.1016/j.polymer.2006.08.030
  18. Y.-W. Choi, S. Lee, K. Kim, P. S. Russo, and D. Sohn, J. Colloid Interface Sci., 313, 469 (2007). https://doi.org/10.1016/j.jcis.2007.05.021
  19. A. Michelman-Ribeiro, F. Horkay, R. Nossal, and H. Boukari, Biomacromolecules, 8, 1595 (2007). https://doi.org/10.1021/bm061195r
  20. Y. Suzuki and I. Nishio, Phys. Rev. B, 45, 4614 (1992). https://doi.org/10.1103/PhysRevB.45.4614
  21. M. Shibayama, Y. Isaka, and Y. Shiwa, Macromolecules, 32, 7086 (1999). https://doi.org/10.1021/ma990414g
  22. H. B. Bohidar and S. Ghosh, Eur. Polym. J., 36, 2545, (2000). https://doi.org/10.1016/S0014-3057(00)00063-X
  23. R. Biehl, X. Guo, R. K. Prud'homme, M. Monlenbusch, J. Allgeier, and D. Richter, Physica B, 350, 76 (2004). https://doi.org/10.1016/j.physb.2004.03.258
  24. P. Diaz-Leyva, E. Perez, and J. L. Arauz-Lara, J. Chem. Phys., 121, 9103 (2004). https://doi.org/10.1063/1.1804157
  25. A. Michelman-Ribeiro, H. Boukari, R. Nossal, and F. Horkay, Macromol. Symp., 227, 221 (2005). https://doi.org/10.1002/masy.200550922
  26. K. Kwon and T. Chang, Polym. Sci. Tech., 13, 384 (2002).
  27. K. Park, Polym. Sci. Tech., 19, 556 (2008).
  28. H. W. Park, J. Jung, and T. Chang, Macromol. Res., 17, 365 (2009). https://doi.org/10.1007/BF03218877
  29. A. S. Verkman, Trends Biochem. Sci., 27, 27 (2002). https://doi.org/10.1016/S0968-0004(01)02003-5
  30. B. C. Shin, S. H. Cho, and M. S. Kim, Polym. Sci. Tech., 14, 298 (2003).
  31. E. J. Oh, J.-A. Yang, S. Y. Yang, J. K. Kim, and S. K. Hahn, Polym. Sci. Tech., 18, 444 (2007).
  32. J. I. Lee and H. S. Yoo, Polym. Sci. Tech., 19, 146 (2008).
  33. S. Park, T. Chang, and I. H. Park, Macromolecules, 24, 5729 (1991). https://doi.org/10.1021/ma00020a038
  34. L. H. Sperling, Introduction to Physical Polymer Science, 4th Ed., Wiley, New York, 2006.
  35. J. E. Mark, Polymer Data Handbook, Oxford University Press, New York, 1999.
  36. W. W. Graessley, Adv. Polym. Sci., 16, 43 (1974).
  37. W. M. Kulicke and R. Keniewske, Rheol. Acta, 23, 75 (1984). https://doi.org/10.1007/BF01333878
  38. A. Ren, P. R. Ellis, S. B. Ross-Murphy, Q. Wang, and P. J. Wood, Carbohydrate Polym., 53, 401 (2003). https://doi.org/10.1016/S0144-8617(03)00117-6
  39. I. H. Park, Y.-C. Yu, K. S. Park, D. I. Lee, and W. S. Lyoo, Polymer(Korea), 30, 271 (2006).
  40. D. W. Ovenall, Macromolecules, 17, 1458 (1984). https://doi.org/10.1021/ma00138a008
  41. E. Donath, A. Krabi, M. Nirschl, V. M. Shilov, M. L. Zharkikh, and B. Vincent, J. Chem. Soc. Faraday Trans., 93, 115 (1997). https://doi.org/10.1039/a603103j
  42. C. W. Hoogendam, J. C. W. Peters, R. Tuinier, A. de Keizer, M. A. Cohen Stuart, and B. H. Bijsterbosch, J. Colloid Interface Sci., 207, 309 (1998). https://doi.org/10.1006/jcis.1998.5762