References
- S. Anita, M. Iannelli, M.-Y. Kim and E.-J. Park, Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math. 58 (1998), 1648-1666 https://doi.org/10.1137/S0036139996301180
- B. Ayati, "Methods for Computational Population Dynamics," University of Chicago Department of Mathematics Doctoral Dissertation, 1998.
- B. Ayati, A variable time step method for an age-dependent population model with non- linear diffusion, SIAM Journal of Numerical Analysis, 37 (5) (2000), 1571-1589. https://doi.org/10.1137/S003614299733010X
- B. Ayati and T. Dupont, Galerkin Methods in Age and Space for a Population Model with Nonlinear Diffusion, SIAM J. Numerical Analysis, 40(3), 2002, pp. 1064-1076. https://doi.org/10.1137/S0036142900379679
- B. Ayati and T. Dupont, Mollified birth in natural-age-grid Galerkin methods for age-structured biological systems, Nonlinearity 22 (2009) 1983-1995. https://doi.org/10.1088/0951-7715/22/8/012
-
G. R. Barrenechea, G. N. Gatica, A primal mixed formulation for exterior transmission problems in
$R^{2}$ , Numer. Math. 88 (2001), no. 2, 237-253. https://doi.org/10.1007/PL00005444 - G. R. Barrenechea, G. N. Gatica, and J.-M. Thomas, Primal mixed formulations for the coupling of FEM and BEM. I. Linear problems, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 7-32. https://doi.org/10.1080/01630569808816812
- G. di Blasio, Non-linear age-dependent population diffusion, Journal of Math. Biology, 8 (1979), 265-284. https://doi.org/10.1007/BF00276312
- D. Braess, "Finite Elements", Cambridge University Press, 1997.
- D. Braess, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4, 155-174. https://doi.org/10.1016/S0045-7825(98)00037-1
- D. Braess, C. Carstensen, B.D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numerische Mathematik, Volume 96, Number 3 (2004) pp. 461-479 https://doi.org/10.1007/s00211-003-0486-5
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. x+350 pp. ISBN: 0-387-97582-9
- F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989), no. 6, 1342-1355 https://doi.org/10.1137/0726078
- S. Busenberg and M. Iannelli A class of nonlinear diffusion problems in age-dependent population dynamics, Nonlinear Anal. 7 (1983), 501-529. https://doi.org/10.1016/0362-546X(83)90041-X
- Z. Chen, J. Douglas, Jr. Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems, Mat. Apl. Comput. 10 (1991), no. 2, 137-160
- P.G. Ciarlet, G. Philippe, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. xix+530 pp. ISBN: 0-444-85028-7
- Q. Deng, "Modeling a fish population with diffusive and adjective movement in a spatial environment," Ph.D. Dissertation, University of Tennessee, Knoxville, 1999.
- W.E. Fitzgibbon, M.E, Parrott and G.F Webb, Diffusive epidemic models with spatial and age dependent heterogeneity, Discrete Contin. Dynam. Systems 1 (1995), no. 1, 35-57.
- M. Gurtin, A system of equations for age-dependent population diffusion, Journal of Theoretical Biology, 40 (1973), 389-392. https://doi.org/10.1016/0022-5193(73)90139-2
- M. Gurtin and R. MacCamy, Diffusion models for age-structured populations, Math. Biosci. 54 (1981), 49-59 https://doi.org/10.1016/0025-5564(81)90075-4
- D. Kim and E.-J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities, Comput. Math. Appl. 51 (2006), no. 5, 793-804 https://doi.org/10.1016/j.camwa.2006.03.006
- M.-Y Kim, Galerkin methods for a model of population dynamics with nonlinear diffusion, Numer. Methods Partial Differential Equations 12 (1996), no. 1, 59-73. https://doi.org/10.1002/(SICI)1098-2426(199601)12:1<59::AID-NUM3>3.0.CO;2-M
- M.-Y. Kim, Discontinuous Galerkin methods for a model of population dynamics with unbounded mortality, SIAM J. Sci. Comput. 27 (2006), 137193 https://doi.org/10.1137/050624182
- M.-Y. Kim, Discontinuous Galerkin methods for the Lotka-McKendrick equation with finite life-span, Mathematical Models & Methods in Applied Sciences 16 (2006), pp.161-176. https://doi.org/10.1142/S0218202506001108
- M.-Y. Kim, Discontinuous-continuous Galerkin methods for a structured model of a biological system, SIAM J. Sci. Comput. 31 (2008) 91338.
- M.-Y. Kim and Y. Kwon, A collocation method for the Gurtin-MacCamy equation with finite life-span, SIAM J. on Numer. Anal. Vol. 39, No. 6, 1914 1937, 2002 https://doi.org/10.1137/S0036142900370927
- M.-Y. Kim, F.A. Milner and E.-J. Park, Some observations on mixed methods for fully nonlinear parabolic problems in divergence form Appl. Math. Lett. 9 (1996), no. 1, 75-81. https://doi.org/10.1016/0893-9659(95)00106-9
- M.-Y. Kim and E.-J Park, An upwind scheme for a nonlinear model in age-structured opulation dynamics, Comput. Math. Appl. 30 (1995), no. 8, 5-17. https://doi.org/10.1016/0898-1221(95)00132-I
- M.-Y. Kim and E.-J Park, Mixed approximation of a population diffusion equation, Comput. Math. Appl. 30 (1995), no.12, 23-33. https://doi.org/10.1016/0898-1221(95)00172-U
- M. Kubo and M. Langlais, Periodic solutions for a population dynamics problem with age-dependence and spatial structure, J. Math. Biol. 29 (1991), no. 4, 363-378. https://doi.org/10.1007/BF00167157
- M. Kubo and M. Langlais, Periodic solutions for nonlinear population dynamics models with agedependence and spatial structure, J. Differential Equations 109 (1994), no. 2, 274-294. https://doi.org/10.1006/jdeq.1994.1050
- M. Langlais, A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal. 16 (1985), 510-529. https://doi.org/10.1137/0516037
- M. Langlais, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol. 26 (1988), no. 3, 319-346. https://doi.org/10.1007/BF00277394
- J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972. xvi+357 pp. 35JXX
- L. Lopez and D. Trigiante, A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion, Nonlinear Anal. 9 (1985), no. 1, 1-12. https://doi.org/10.1016/0362-546X(85)90048-3
- F.A. Milner, A numerical method for a model of population dynamics with spatial diffusion Comput. Math. Appl. 19 (1990), no. 4, 31-43. https://doi.org/10.1016/0898-1221(90)90135-7
- L.D. Marini, L. Donatella and P. Pietra, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput. 8 (1989), no. 3, 219-239.
- J. Park, A primal mixed domain decomposition procedure based on the nonconforming streamline diffusion method, Appl. Numer. Math. 50 (2004), no. 2, 165-181 https://doi.org/10.1016/j.apnum.2003.12.020
- G. Pelovska, "Numerical Investigations in the Field of Age-Structured Population Dynamics," Ph.D. Dissertation (2007), University of Trento, Povo, Italy.
- J. E. Roberts and J. M. Thomas "Mixed and Hybrid methods", Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.) Vol II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989, 523-639.
- J. C. Simo, M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg. 29 (1990), no. 8, 1595-1638. https://doi.org/10.1002/nme.1620290802
- S. T. Yeo, B. C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle, Internat. J. Numer. Methods Engrg. 39 (1996), no. 18, 3083-3099. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3083::AID-NME996>3.0.CO;2-F
- C.Walker, Positive equilibrium solutions for age and spatially structured population m odels, SIAM J. Math. Anal. 41 (2009), 1366-1387. https://doi.org/10.1137/090750044