DOI QR코드

DOI QR Code

NUMERICAL DISCRETIZATION OF A POPULATION DIFFUSION EQUATION

  • Cho, Sung-Min (DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY) ;
  • Kim, Dong-Ho (UNIVERSITY COLLEGE, YONSEI UNIVERSITY) ;
  • Kim, Mi-Young (DEPARTMENT OF MATHEMATICS, INHA UNIVERSITY) ;
  • Park, Eun-Jae (DEPARTMENT OF COMPUTATIONAL SCIENCE AND ENGINEERING, YONSEI UNIVERSITY)
  • Received : 2010.08.07
  • Accepted : 2010.08.07
  • Published : 2010.09.25

Abstract

A numerical method is proposed and analyzed to approximate a mathematical model of age-dependent population dynamics with spatial diffusion. The model takes a form of nonlinear and nonlocal system of integro-differential equations. A finite difference method along the characteristic age-time direction is considered and primal mixed finite elements are used in the spatial variable. A priori error estimates are derived for the relevant variables.

Keywords

References

  1. S. Anita, M. Iannelli, M.-Y. Kim and E.-J. Park, Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math. 58 (1998), 1648-1666 https://doi.org/10.1137/S0036139996301180
  2. B. Ayati, "Methods for Computational Population Dynamics," University of Chicago Department of Mathematics Doctoral Dissertation, 1998.
  3. B. Ayati, A variable time step method for an age-dependent population model with non- linear diffusion, SIAM Journal of Numerical Analysis, 37 (5) (2000), 1571-1589. https://doi.org/10.1137/S003614299733010X
  4. B. Ayati and T. Dupont, Galerkin Methods in Age and Space for a Population Model with Nonlinear Diffusion, SIAM J. Numerical Analysis, 40(3), 2002, pp. 1064-1076. https://doi.org/10.1137/S0036142900379679
  5. B. Ayati and T. Dupont, Mollified birth in natural-age-grid Galerkin methods for age-structured biological systems, Nonlinearity 22 (2009) 1983-1995. https://doi.org/10.1088/0951-7715/22/8/012
  6. G. R. Barrenechea, G. N. Gatica, A primal mixed formulation for exterior transmission problems in $R^{2}$, Numer. Math. 88 (2001), no. 2, 237-253. https://doi.org/10.1007/PL00005444
  7. G. R. Barrenechea, G. N. Gatica, and J.-M. Thomas, Primal mixed formulations for the coupling of FEM and BEM. I. Linear problems, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 7-32. https://doi.org/10.1080/01630569808816812
  8. G. di Blasio, Non-linear age-dependent population diffusion, Journal of Math. Biology, 8 (1979), 265-284. https://doi.org/10.1007/BF00276312
  9. D. Braess, "Finite Elements", Cambridge University Press, 1997.
  10. D. Braess, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4, 155-174. https://doi.org/10.1016/S0045-7825(98)00037-1
  11. D. Braess, C. Carstensen, B.D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numerische Mathematik, Volume 96, Number 3 (2004) pp. 461-479 https://doi.org/10.1007/s00211-003-0486-5
  12. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. x+350 pp. ISBN: 0-387-97582-9
  13. F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989), no. 6, 1342-1355 https://doi.org/10.1137/0726078
  14. S. Busenberg and M. Iannelli A class of nonlinear diffusion problems in age-dependent population dynamics, Nonlinear Anal. 7 (1983), 501-529. https://doi.org/10.1016/0362-546X(83)90041-X
  15. Z. Chen, J. Douglas, Jr. Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems, Mat. Apl. Comput. 10 (1991), no. 2, 137-160
  16. P.G. Ciarlet, G. Philippe, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. xix+530 pp. ISBN: 0-444-85028-7
  17. Q. Deng, "Modeling a fish population with diffusive and adjective movement in a spatial environment," Ph.D. Dissertation, University of Tennessee, Knoxville, 1999.
  18. W.E. Fitzgibbon, M.E, Parrott and G.F Webb, Diffusive epidemic models with spatial and age dependent heterogeneity, Discrete Contin. Dynam. Systems 1 (1995), no. 1, 35-57.
  19. M. Gurtin, A system of equations for age-dependent population diffusion, Journal of Theoretical Biology, 40 (1973), 389-392. https://doi.org/10.1016/0022-5193(73)90139-2
  20. M. Gurtin and R. MacCamy, Diffusion models for age-structured populations, Math. Biosci. 54 (1981), 49-59 https://doi.org/10.1016/0025-5564(81)90075-4
  21. D. Kim and E.-J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities, Comput. Math. Appl. 51 (2006), no. 5, 793-804 https://doi.org/10.1016/j.camwa.2006.03.006
  22. M.-Y Kim, Galerkin methods for a model of population dynamics with nonlinear diffusion, Numer. Methods Partial Differential Equations 12 (1996), no. 1, 59-73. https://doi.org/10.1002/(SICI)1098-2426(199601)12:1<59::AID-NUM3>3.0.CO;2-M
  23. M.-Y. Kim, Discontinuous Galerkin methods for a model of population dynamics with unbounded mortality, SIAM J. Sci. Comput. 27 (2006), 137193 https://doi.org/10.1137/050624182
  24. M.-Y. Kim, Discontinuous Galerkin methods for the Lotka-McKendrick equation with finite life-span, Mathematical Models & Methods in Applied Sciences 16 (2006), pp.161-176. https://doi.org/10.1142/S0218202506001108
  25. M.-Y. Kim, Discontinuous-continuous Galerkin methods for a structured model of a biological system, SIAM J. Sci. Comput. 31 (2008) 91338.
  26. M.-Y. Kim and Y. Kwon, A collocation method for the Gurtin-MacCamy equation with finite life-span, SIAM J. on Numer. Anal. Vol. 39, No. 6, 1914 1937, 2002 https://doi.org/10.1137/S0036142900370927
  27. M.-Y. Kim, F.A. Milner and E.-J. Park, Some observations on mixed methods for fully nonlinear parabolic problems in divergence form Appl. Math. Lett. 9 (1996), no. 1, 75-81. https://doi.org/10.1016/0893-9659(95)00106-9
  28. M.-Y. Kim and E.-J Park, An upwind scheme for a nonlinear model in age-structured opulation dynamics, Comput. Math. Appl. 30 (1995), no. 8, 5-17. https://doi.org/10.1016/0898-1221(95)00132-I
  29. M.-Y. Kim and E.-J Park, Mixed approximation of a population diffusion equation, Comput. Math. Appl. 30 (1995), no.12, 23-33. https://doi.org/10.1016/0898-1221(95)00172-U
  30. M. Kubo and M. Langlais, Periodic solutions for a population dynamics problem with age-dependence and spatial structure, J. Math. Biol. 29 (1991), no. 4, 363-378. https://doi.org/10.1007/BF00167157
  31. M. Kubo and M. Langlais, Periodic solutions for nonlinear population dynamics models with agedependence and spatial structure, J. Differential Equations 109 (1994), no. 2, 274-294. https://doi.org/10.1006/jdeq.1994.1050
  32. M. Langlais, A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal. 16 (1985), 510-529. https://doi.org/10.1137/0516037
  33. M. Langlais, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol. 26 (1988), no. 3, 319-346. https://doi.org/10.1007/BF00277394
  34. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972. xvi+357 pp. 35JXX
  35. L. Lopez and D. Trigiante, A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion, Nonlinear Anal. 9 (1985), no. 1, 1-12. https://doi.org/10.1016/0362-546X(85)90048-3
  36. F.A. Milner, A numerical method for a model of population dynamics with spatial diffusion Comput. Math. Appl. 19 (1990), no. 4, 31-43. https://doi.org/10.1016/0898-1221(90)90135-7
  37. L.D. Marini, L. Donatella and P. Pietra, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput. 8 (1989), no. 3, 219-239.
  38. J. Park, A primal mixed domain decomposition procedure based on the nonconforming streamline diffusion method, Appl. Numer. Math. 50 (2004), no. 2, 165-181 https://doi.org/10.1016/j.apnum.2003.12.020
  39. G. Pelovska, "Numerical Investigations in the Field of Age-Structured Population Dynamics," Ph.D. Dissertation (2007), University of Trento, Povo, Italy.
  40. J. E. Roberts and J. M. Thomas "Mixed and Hybrid methods", Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.) Vol II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989, 523-639.
  41. J. C. Simo, M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg. 29 (1990), no. 8, 1595-1638. https://doi.org/10.1002/nme.1620290802
  42. S. T. Yeo, B. C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle, Internat. J. Numer. Methods Engrg. 39 (1996), no. 18, 3083-3099. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3083::AID-NME996>3.0.CO;2-F
  43. C.Walker, Positive equilibrium solutions for age and spatially structured population m odels, SIAM J. Math. Anal. 41 (2009), 1366-1387. https://doi.org/10.1137/090750044