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ABSTRACT. The aim of this work is to determine the quasi-static thermal stresses of an in-
finitely long circular cylinder having constant initial temperature under steady-state field. The
arbitrary heat flux is applied on the lower surface and the upper surface of the cylinder is at
initial temperature. The fixed circular edge is thermally insulated. The results are obtained in
series form in terms of Bessel’s functions. These have been computed numerically and illus-
trated graphically.

1. INTRODUCTION

As known, thermal behaviors of structures must be considered in many situations. Study of
thermal effect on deformations and stresses of a plate, especially a thick plate is increasingly
important. Firstly, the problems of thick plates are more complicated and thus more attractive
to many scientists. Secondly, there are practical requirements for thick plates in various modern
projects, such as high building, raceway, high-way, container wharf, and so on.

Atsumi et al [9] determined the linear thermoelastic problem of an infinitely long circular
cylinder with a circumferential edge crack is solved. The thermal stresses are caused by a uni-
form heat flow disturbed by the presence of the crack. The crack surfaces and the cylindrical
surface are assumed to be insulated. Noda et al [7] has determined the two-dimensional prob-
lem of an infinitely long circular cylinder whose lateral surface is traction-free and subjected to
an asymmetrical heating is considered within the context of the theory of generalized thermoe-
lasticity with one relaxation time. Thomas et al [6] studied analysis is presented of the thermal
stresses encountered during cooling of a solid circular cylinder initially heated from uniform
temperature by Newtonian convection, followed by sudden cooling prior to reaching thermal
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equilibrium during the heating phase of the cycle. Sinha et al [5] has studied the transient heat
conduction problem of a thick annular disk with transversely anisotropic coefficients of ther-
mal conductivity is solved by using the Rayleigh-Ritz. Hany H. Sherief et al [4] determined the
analysis of axisymmetric mechanical and thermal stresses for a long hollow cylinder made up
of functionally graded material, as functions of radial and longitudinal directions is developed.
Doo-Sung Lee [3] determined the three dimensional analysis of the stress distribution in a long
circular cylinder containing a concentric very thin spherical cap cavity. The central plane of
the cavity is perpendicular to the axis of the cylinder, and the cylinder is subjected to bending.
Also Kulkarni et al [1] studied quasi-static thermal stresses in a thick circular plate subjected
to arbitrary initial temperature on the upper surface with lower surface at zero temperature and
the fixed circular edge thermally insulated.

In this work we study the quasi-static thermoelastic problem of an infinitely long circular
cylinder having constant initial temperature (Ti) under steady-state field. The arbitrary heat
flux is applied on the lower surface (z = 0) and the upper surface of the cylinder is at initial
temperature (Ti). The fixed circular edge (r = a) is thermally insulated. The results are
obtained in series form in terms of Bessel’s functions. These have been computed numerically
and illustrated graphically. But as yet nobody has studied the such type of problem.

In this work, we present some new interesting results of quasi-static thermoelastic problem
of an infinitely long circular cylinder under steady-state field. The results presented here will
be more useful in engineering problem particularly in the determination of the state of strain
in a long circular cylinder constituting foundations of containers for hot gases or liquids, in the
foundations for furnaces etc.

2. FORMULATION OF THE PROBLEM

Consider an infinitly long solid circular cylinder of radius a subjected to steady-state temper-
ature field. Let the initial temperature of the circular cylinder is given by a constant temperature
Ti. The heat flux

(−Q0f(r)
λ

)
is applied on the lower surface of the cylinder and the upper sur-

face of the cylinder is at initial temperature Ti. The fixed circular edges (r = a) is thermally
insulated. Assume that the boundary surface of a circular cylinder is free from traction. Under
these more realistic prescribed conditions, the quasi-static thermal stresses need to be deter-
mined.

The differential equation governing the displacement potential function φ (r, z) is given
in [2] as,

∂2φ

∂r2
+

1

r

∂φ

∂r
+

∂2φ

∂z2
= Kτ (2.1)

where K is the restraint coefficient and temperature change τ = T − Ti , where Ti is initial
temperature. The displacement function φ is known as Goodier’s thermoelastic displacement
potential.

The steady-state temperature of the cylinder satisfies the heat condition equation,
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∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2
= 0 (2.2)

with the boundary conditions,
∂T

∂r
= 0 at r = a (2.3)

λ
∂T

∂z
= −Q0f(r) at z = 0, 0 ≤ r ≤ a (2.4)

T = Ti at z → ∞, 0 ≤ r ≤ a (2.5)
The displacement function in the cylindrical coordinate system are represented by the Michell’s

function defined in [2] as,

ur =
∂φ

∂r
− ∂2M

∂r∂z
(2.6)

uz =
∂φ

∂z
+ 2 (1− ν)∇2M − ∂2M

∂z2
(2.7)

The Michell’s function M must satisfy

∇2∇2M = 0 (2.8)
where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
(2.9)

The components of the stresses are represented by the thermoelastic displacements potential φ
and Michell’s function M as

σrr = 2G

[
∂2φ

∂r2
−Kτ +

∂

∂z

(
ν∇2M − ∂2M

∂r2

)]
(2.10)

σθθ = 2G

[
1

r

∂φ

∂r
−Kτ +

∂

∂z

(
ν∇2M − 1

r

∂M

∂r

)]
(2.11)

σzz = 2G

[
∂2φ

∂z2
−Kτ +

∂

∂z

(
(2− ν)∇2M − ∂2M

∂z2

)]
(2.12)

and

σrz = 2G

[
∂2φ

∂r∂z
+

∂

∂r

(
(1− ν)∇2M − ∂2M

∂z2

)]
(2.13)

where G and ν are the shear modulus and poisson’s ratio respectively. The boundary conditions
on the traction free surfaces of an circular plate are

σrr = σrz = 0 at r = a (2.14)

Equations (2.1) to (2.14) constitute the mathematical formulation of the problem under consid-
eration.
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3. SOLUTION OF THE PROBLEM

To obtain the expressions for temperature T (r, z), we assume

T (r, z) = Ti +

∞∑

n=1

AnJ0(ξnr)e
−ξnz, (3.1)

where ξ1, ξ2, . . . are the roots of the transcendental equation J1(ξa) = 0. Jn(x) is Bessel
function of the first kind of order n.
Using equations (2.4) and (3.1), one obtains

Q0f(r) = λ ξnAnJ0(ξnr) (3.2)

By theory of Bessel’s function, one obtains

An =
2Q0f(ξn)

a2λ ξnJ2
0 (ξnr)

, (3.3)

where f(ξn) is the Hankel transform of f(r).

f(ξn) =

∫ a

0
rJ0(ξnr)f(r)dr (3.4)

The temperature change τ = T − Ti is

τ =
∞∑

n=1

AnJ0(ξnr)e
−ξnz. (3.5)

Now a suitable form of M satisfying Equation (2.8) is given by

M =
∞∑

n=1

[BnJ0(ξnr) + CnξnrJ1(ξnr)]e
−ξnz, (3.6)

where Bn and Cn are arbitrary constants, which can be determined from the boundary condi-
tion (2.14).

The potential φ(r, z) is obtained from equations (2.1) and (3.5) as

φ(r, z) =

(
K

2

) ∞∑

n=1

An
r

ξn
J1(ξnr)e

−ξnz (3.7)

Now using Equations (3.5)-(3.7) in (2.6), (2.7) and (2.10)-(2.13), one obtains the expressions
for displacement and thermal stresses as,

ur =
∞∑

n=1

{
K

An

2
rJ0(ξnr)−Bnξ

2
nJ1(ξnr) + Cnξ

2
n[ξnrJ0(ξnr)]

}
e−ξnz (3.8)

uz =
∞∑

n=1

{
−K

An

2
rJ1(ξnr)−Bnξ

2
nJ0(ξnr)

+Cnξ
2
n[4(1− ν)J0(ξnr)− ξnrJ1(ξnr)]

}
e−ξnz

(3.9)
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σrr = 2G
∞∑

n=1

{
K

An

2
[J0(ξnr)− ξnrJ1(ξnr)]−KAnJ0(ξnr)

−Bnξ
2
n

[
ξnJ0(ξnr)− J1(ξnr)

r

]

+Cnξ
3
n[(1− 2ν)J0(ξnr)− ξnrJ1(ξnr)]

}
e−ξnz

(3.10)

σθθ = 2G
∞∑

n=1

{
K

An

2
J0(ξnr)−KAnJ0(ξnr)

− Bnξ
2
n

(
J1(ξnr)

r

)
+ Cnξ

3
n(1− 2ν)J0(ξnr)

}
e−ξnz

(3.11)

σzz = 2G

∞∑

n=1

{
K

An

2
ξnrJ1(ξnr)−KAnJ0(ξnr) + Bnξ

3
nJ0(ξnr)

− Cnξ
3
n[(4− 2ν)J0(ξnr)− ξnrJ1(ξnr)]

}
e−ξnz

(3.12)

σrz = 2G

∞∑

n=1

{
−K

An

2
ξnrJ0(ξnr) +Bnξ

3
nJ1(ξnr)

−Cnξ
3
n[2(1− ν)J1(ξnr) + ξnrJ0(ξnr)]

}
e−ξnz

(3.13)

Now in order to satisfy the boundary conditions given in the equation (2.14), we use equa-
tions (3.10) and (3.13) for Bn and Cn one obtains,

Bn = −(1− ν)
KAn

ξ3n
and

Cn = −KAn

2ξ3n
Using these values of Bn and Cn in equations (3.8) to (3.13), one obtains the expressions

for displacements and stresses as

ur = K(1− ν)

∞∑

n=1

An

ξn
J1(ξnr)e

−ξnz (3.14)

uz = −K(1− ν)
∞∑

n=1

An

ξn
J0(ξnr)e

−ξnz (3.15)

σrr = −2GK(1− ν)
∞∑

n=1

An

rξn
J1(ξnr)e

−ξnz (3.16)

σθθ = −2GK(1− ν)
∞∑

n=1

An

[
J0(ξnr)− J1(ξnr)

rξn

]
e−ξnz (3.17)
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σzz = 0 (3.18)

and
σrz = 0 (3.19)

SPECIAL CASE
Setting

f(r) = (r2 − a2)2 (3.20)

We apply the finite Hankel transform defined as in [8] to get

f(ξn) =

∫ a

0
r(r2 − a2)2J0(ξnr)dr,

f(ξn) =
8a

{
(8− a2ξ2n)J1(ξna)− 4aξnJ0(ξna)

}

ξ5n
.

4. NUMERICAL CALCULATIONS

Numerical calculations have been carried out for a steel (SN 50C) plate with parameters
chosen a = 2m, z = 4m. The thermal diffusivity is given by k = 15.9× 106(m2s−1) and the
Poisson ratio by ν = 0.281. The transcendental roots of J1(ξna) as in [10] are ξ1 = 3.8317,
ξ2 = 7.0156, ξ3 = 10.1735, ξ4 = 13.3237, ξ5 = 16.470, ξ6 = 19.6159, ξ7 = 22.7601,
ξ8 = 25.9037, ξ9 = 29.0468, ξ10 = 32.18.

For convenience we set

α =

(
8K(1− ν)

a2λ

)
β =

(
16GK(1− ν)

a2λ

)

The numerical expressions for the displacement and stress components are obtained in equa-
tions (3.14) to (3.17).

The numerical calculation has been carried out with the help of computational mathematical
software Mathcad-2007, and the graphs are plotted with the help of Excel(MS Office-2007).

5. CONCLUDING REMARKS

In this paper, we have discussed the long circular cylinder which is free from traction sub-
jected to the arbitrary heat flux is applied on the lower surface and determine the expressions
for the temperature, displacement and stress components.

As a special case a mathematical model is constructed for

f(r) = (r2 − a2)2

and numerical calculations were performed. The thermoelastic behavior is examined such as
temperature, displacement and stress components with the help of arbitrary heat flux is applied
on the lower surface.
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Figure 1, the radial displacement function ur/α increases within the circular region 0 ≤ r ≤ 1
and decreases within annular region 1 ≤ r ≤ 2 in the radial direction.

FIGURE 1. The radial displacement function ur/α in radial direction.

Figure 2, the axial displacement function uz/α oscillates in the radial direction .

FIGURE 2. The axial displacement function uz/α in radial direction.
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Figure 3, the radial stress function σrr/β decreases within the circular region 0 ≤ r ≤ 1 and
increases within the annular region 1 ≤ r ≤ 2 in the radial direction.

FIGURE 3. The radial stress function σrr/β in radial direction.

Figure 4, the angular stress function σθθ/β shows the oscillating behaviors in the radial direc-
tion.

FIGURE 4. The angular stress function σθθ/β in radial direction.
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It means we may find out the displacement and stress components occurs near heat source.
With an increases in temperature the circular plate will tend to expand in the radial direction as
well as in the axial direction. In the plane state of stress the stress components σzz and σrz are
zero. Also from the figure of displacement it can observe that displacement occurs around the
center towards downward direction. So it may conclude that due to arbitrary heat flux is applied
on the lower surface of the circular cylinder expands in axial direction and bends concavely at
the center. This expansion is inversely proportional to thickness of circular cylinder.

The results obtained here are more useful in engineering problems particularly in the deter-
mination of state of strain in a long circular cylinder. Also any particular case of special interest
can be derived by assigning suitable values to the parameters and functions in the expressions
(3.14) to (3.17).

REFERENCES

[1] V.S. Kulkarni and K.C. Deshmukh, Quasi-static thermal stresses in a thick circular plate, ScienceDirect,
Applied Mathematics Modelling, 31 (2007),1479-1488.

[2] N. Noda, B. Hetnarski, Y. Tanigawa, Thermal stresses, Second edition, Taylor and Francis, New York, 2003,
259–261.

[3] Doo-Sung Lee, Stress Distribution in a Long Circular Cylinder Containing an Elliptical Crack, Z. Angrew
Math. Mech.(ZAMM), 77 (1997), 701–709.

[4] Hany H. Sherief, Mohamed N. Anwar, Two-dimensional generalized thermoelasticity problem for an infinitely
long cylinder, Journal of Thermal Stresses, 17 (1994), 213–227.

[5] S. K. Sinha, Transient temperature distribution in a thick annular disk with transversely anisotropic thermal
conductivities, Numerical Heat Transfer, Part B: Fundamentals, 12 (1987), 253–261.

[6] J. Thomas, J. Singh, and D. Hasselman, Thermal stresses in a long circular cylinder subjected to sudden
cooling during transient convection heating, Journal of Thermal Stresses, 8 (1985), 249–260.

[7] N. Noda, Transient thermoelastic contact problem in a long circular cylinder, Journal of Thermal Stresses, 7
1984, 135–147.

[8] I. N. Sneddon, The use of integral transform, McGraw Hill, New York, 1972, 235–238
[9] A. Atsumi, Y. Mori and Y. Shindo, Thermal stresses in a circular cylinder with a circumferential edge crack

under uniform heat flow, Journal of Thermal Stresses, 2 (1979), 425–436.
[10] N. M. Ozisik, Boundary value problem of heat conduction, International textbook company, Scranton, Penn-

sylvania, 1968, 135–148.


