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ABSTRACT. This paper develops a least-squares approach to the solution of the optimal con-
trol problem for the Navier-Stokes equations. We recast the optimality system as a first-order
system by introducing velocity-flux variables and associated curl and trace equations. We show
that a least-squares principle based on L2 norms applied to this system yields optimal dis-
cretization error estimates in the H1 norm in each variable.

1. INTRODUCTION

In [8], Choi, Kim, Lee, and Shin developed first-order system least-squares functionals for
formulation of the optimal control problem for the scaled Navier-Stokes equations. From the
Lagrangian, one may derive an optimality system of equations for the solution of the optimal
control problem for the Navier-Stokes equations. They recast the optimality system as a first-
order system by introducing a velocity-flux variable. A least-squares principle based on L2-
norm applied to this first-order system and optimal discretization error estimates are obtained.

The goal of this paper is to extend this methodology to the optimal control problem for
the original Navier-Stokes equations in two and three dimensions. We make this extension in
the same way that the optimal control problem for the scaled Navier-Stokes equations were
reformulated based on the velocity flux variables, but now we replace the data ud by functions
with known values. We first obtain a coupled optimality system related to two Navier-Stokes
type equations associated with state variables and adjoint variables. The optimality system
may be written as first-order system of partial differential equations by introducing velocity-
flux variables. The Euler-Lagrange equations for the corresponding least-squares principle are
then recast in the canonical form. This allows us to apply conventional abstract theory and our
results to obtain optimal error estimates for least-squares finite element method.
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The optimal control problem we consider is to minimize the functional

J (u, p, f) =
1
2
‖u− ud‖2 +

β

2
‖f‖2, (1.1)

subject to the incompressible Navier-Stokes equations

−ν∆u + (u · ∇)u +∇p = f in Ω, (1.2)
∇ · u = 0 in Ω, (1.3)

u = 0 on ∂Ω (1.4)

where ud is a given desired function. Here, Ω ⊂ Rn(n = 2 or 3) be an open, connected,
and bounded domain with Lipschitz boundary ∂Ω = Γ and u a candidate velocity field, p the
pressure, f a prescribed forcing term and ν the viscous constant. Assume that p satisfies the
zero mean constraint,

∫
Ω p dx = 0. The objective of this optimal control problem is to seek

a state variables u and p, and the control f which minimize the L2-norm distances between
u and ud and satisfy (1.2)–(1.4). The second term in (1.1) is added as a limiting the cost of
control and the positive penalty parameter δ can be used to change the relative importance of
the two terms appearing in the definition of the functional.

This paper consists of the following. In the next section, we give a precise statement of the
optimization problem. Then we reformulate the optimality systems to the first-order system
and define the L2-norm least squares functional. In §3, we obtain the optimal error estimates
for least-squares finite element method for the optimality system.

Throughout the paper, we use boldface lower case font to denote vectors and underline
boldface upper case font to denote matrices.

2. THE OPTIMAL CONTROL PROBLEM

2.1. The optimization problem. Let u ∈ H1
0 (Ω)n and p ∈ L2

0(Ω) denote the state variables,
and let f ∈ L2(Ω)n denote the distributed control. The state and control variables are also
constrained to satisfy the system (1.2)–(1.4), which recast into the weak form:

νa(u,w) + c(u,u,w)− b(w, p) = 〈f ,w〉 ∀w ∈ H1(Ω)n (2.1)

b(u, r) = 0 ∀r ∈ L2(Ω) (2.2)

where

a(u,w) =
∫

Ω
∇u : ∇wdx =

1
2

∫

Ω
(∇u +∇uT ) : (∇w +∇wT )dx,

b(w, p) =
∫

Ω
p∇ ·wdx,

c(u,v,w) =
∫

Ω
(u · ∇)v ·wdx

Then, since f ∈ L2(Ω)n, it is well known (see [10] or [14]) that (u, p) ∈ H2(Ω)n × H1(Ω)
and ‖u‖2 + ‖p‖1 ≤ C‖f‖.
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With J (·) given by (1.1), the admissibility set Uad is defined by

Uad = {(u, p, f) ∈ H1
0 (Ω)n × L2

0(Ω)× L2(Ω)n : (2.3)

J (u, p, f) < ∞ and (u, p, f) satisfies (2.1) and (2.2)}

Then (û, p̂, f̂) ∈ Uad is called an optimal solution if there exists ε > 0 such that

J (û, p̂, f̂) ≤ J (u, p, f) ∀(u, p, f) ∈ Uad

satisfying

‖û− u‖1 + ‖p̂− p‖+ ‖f̂ − f‖ < ε

The optimal control problem can now be formulated as a constrained minimization in a
Hilbert space

min
(u,p,f)∈Uad

J (u, p, f) (2.4)

Theorem 2.1. Given ud, there exists a solution (ũ, p̃, f̃) ∈ Uad such that (1.1) is minimized.

Proof. It is similar to Thoerem 2.1 in [11]. ¤

2.2. An optimality system. From the Lagrangian

L(u, p, f ,v, q : ud) = J (u, p, f)− (ν∆u− (u · ∇)u−∇p + f ,v)− (∇ · u, q)

where J (·, ·, ·) is defined by (1.1), one may derive an optimality system of equations for the
solution of (2.4). The constrained problem (2.4) can now be recast as the unconstrained prob-
lem of finding stationary points of L(·). We now apply the necessary conditions for the latter
problem. Clearly, setting to zero the first variations with respect to u, p, f ,v and q yields the
optimality system

−(ν∆u− (u · ∇)u−∇p + f , ṽ) = 0 ∀ṽ ∈ H1
0 (Ω)n,

−(∇ · u, q̃) = 0 ∀q̃ ∈ L2
0(Ω),

u = 0, on Γ,

(u− ud, ũ)− (ν∆ũ− (ũ · ∇)u− (u · ∇)ũ,v) + (∇q, ũ) = 0 ũ ∈ H1
0 (Ω)n,

−(∇ · v, p̃) = 0 p̃ ∈ L2
0(Ω),

v = 0 on Γ,

(βf − v, f̃) = 0 f̃ ∈ H−1(Ω)n.





(2.5)
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Integrations by parts may be used to show that the system (2.5) constitutes a weak formula-
tion of the problem

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

(u− ud)− ν∆v + (∇u)tv − (u · ∇)v +∇q = 0 in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ,

βf = v in Ω.





(2.6)

Note that this system is coupled, i.e., the constraint equations for the state variables depend on
the unknown controls, the adjoint equations for the Lagrange multipliers depend on the state,
and optimality conditions for the controls depend on the Lagrange multipliers.

2.3. First-order system. To formulate the least-squares method, system (2.6) will be trans-
formed into an equivalent first-order system. Introduce the velocity-flux variable

U = ∇ut and V = ∇vt

which is a matrix with entries Uij = ∂uj/∂xi and Vij = ∂vj/∂xi, 1 ≤ i, j ≤ n. Then

(∇tU)t = ∆u and (∇tV)t = ∆v

and it is easy to see that the new variable satisfies the identities

trU = 0, ∇×U = 0, trV = 0, ∇×V = 0 in Ω

and
n×U = 0 n×V = 0 on Γ

where trU =
∑n

i=1 Uii and n is the outward unit normal on Γ.
The optimality condition (the last equation in (2.6)) can be substituted into the state equa-

tions and thus, we have the first-order optimality system

−ν(∇tU)t + Utu +∇p =
v
β

in Ω,

∇tu = 0 in Ω,

U−∇ut = 0 in Ω,

∇(trU) = 0 in Ω,

∇×U = 0 in Ω,

u = 0 on Γ,∫
p dx = 0 in Ω,

n×U = 0 on Γ,





(2.7)
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and

(u− ud)− ν(∇tV)t + Uv −Vtu +∇q = 0 in Ω,

∇tv = 0 in Ω,

V −∇vt = 0 in Ω,

∇(trV) = 0 in Ω,

∇×V = 0 in Ω,

v = 0 on Γ,∫
q dx = 0 in Ω,

n×V = 0 on Γ.





(2.8)

The next step in the formulation of a first-order system is to scale the first equations in (2.7)
and (2.8) by the Reynolds number and to replace the data ud by functions with known values.
The resulting form of the equations will provide insight into the overall approach and facilitate
error analysis of the corresponding least-squares method. For this purpose, we assume that
ud ∈ L2(Ω)n and consider the optimal solution (u0, p0,v0, q0) of the scaled optimality system
for the Stokes equation

−∆u +∇p =
v
νβ

in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

1
ν

(u− ud)−∆v +∇q = 0 in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ





(2.9)

Letting U0 = ∇ut
0 and V0 = ∇vt

0, then the optimality system (2.7)–(2.8) is replaced by

−(∇tU)t +
1
ν

(U + U0)
t(u + u0) +∇p =

v
νβ

in Ω,

∇tu = 0 in Ω,

U−∇ut = 0 in Ω,

∇(trU) = 0 in Ω,

∇×U = 0 in Ω,

u = 0 on Γ,∫
p dx = 0 in Ω,

n×U = 0 on Γ,





(2.10)
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and
1
ν
u− (∇tV)t +

1
ν

(U + U0)(v + v0)

−1
ν

(V + V0)
t(u + u0) +∇q = 0 in Ω,

∇tv = 0 in Ω,

V −∇vt = 0 in Ω,

∇(trV) = 0 in Ω,

∇×V = 0 in Ω,

v = 0 on Γ,∫
q dx = 0 in Ω,

n×V = 0 on Γ.





(2.11)

which is the principal system that relates the perturbation (U,u, νp,V,v, νq) to the optimality
system of the stokes equations (U0,u0, νp0,V0,v0, νq0).

3. LEAST-SQUARES FINITE ELEMENT METHOD

3.1. Least-Squares. The L2 least-squares functional for first-order system (2.10)–(2.11) is
defined as follows:

F1(U,u, p,V,v, q : ud) (3.1)

= ‖ − (∇tU)t +
1
ν

(U + U0)
t(u + u0) +∇p− v

νβ
‖2

+ ‖∇tu‖2 + ‖U−∇ut‖2 + ‖∇(trU)‖2 + ‖∇ ×U‖2

+ ‖ − (∇tV)t +
1
ν

(U + U0)(v + v0)− 1
ν

(V + V0)
t(u + u0) +∇q +

1
ν
u‖2

+ ‖∇tv‖2 + ‖V −∇vt‖2 + ‖∇(trV)‖2 + ‖∇ ×V‖2.

To define the least-squares method, we need a suitable minimization problem.
Let X := H1(Ω)n2 ×H1(Ω)n × [H1(Ω) ∩ L2

0(Ω)] and

V := { (U,u, p,V,v, q) ∈ X×X | u = 0,v = 0,n×U = 0,n×V = 0 on Γ }. (3.2)

Then the least-squares principle is to find (U,u, p,V,v, q) ∈ V such that

F1(U,u, p,V,v, q : ud) = inf
(τ,w,r,ψ,x,x)∈V

F1(τ,w, r, ψ,x, x : ud).

It is easy to see that the Euler-Lagrange equation for this minimization problem is given by the
variational problem :
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find (U,u, p,V,v, q) ∈ V such that

B
(
(U,u, p,V,v, q), (Ũ, ũ, p̃, Ṽ, ṽ, q̃)

)
(3.3)

=
(
− (∇tU)t +

1
ν

(U + U0)
t(u + u0) +∇p− v

νβ
,

− (∇tŨ)t +
1
ν
Ũ

t
(u + u0) +

1
ν

(U + U0)
tũ +∇p̃− ṽ

νβ

)

+ (∇tu,∇tũ) + (U−∇ut, Ũ−∇ũt) + (∇(trU),∇(trŨ)) + (∇×U,∇× Ũ)

+
(
− (∇tV)t +

1
ν

(U + U0)(v + v0)− 1
ν

(V + V0)
t(u + u0) +∇q +

1
ν
u,

− (∇tṼ)t +
1
ν
Ũ(v + v0) +

1
ν

(U + U0)ṽ

− 1
ν
Ṽ

t
(u + u0)− 1

ν
(V + V0)

tũ +∇q̃ +
1
ν
ũ
)

+ (∇tv,∇tṽ) + (V −∇vt, Ṽ −∇ṽt) + (∇(trV),∇(trṼ)) + (∇×V,∇× Ṽ)
= 0

for all (Ũ, ũ, p̃, Ṽ, ṽ, q̃) ∈ V.
Let Vh denote a finite-dimensional subspace of V. Then the least-squares discretization

method of the optimal control problem for the Navier-Stokes equations is defined by the fol-
lowing discrete variational problem:

find (Uh,uh, ph,Vh,vh, qh) ∈ Vh such that

B((Uh,uh, ph,Vh,vh, qh), (Ũ
h
, ũh, p̃h, Ṽ

h
, ṽh, q̃h)) = 0

for all (Ũ
h
, ũh, p̃h, Ṽ

h
, ṽh, q̃h) ∈ Vh (3.4)

It is easy to see that the discrete variational problem (3.4) corresponds to the necessary condi-
tion for the following discrete least-squares principle for (3.1):

find (Uh,uh, ph,Vh,vh, qh) ∈ Vh such that

F1(Uh,uh, ph,Vh,vh, qh : ud) ≤ F1(Ũ
h
, ũh, p̃h, Ṽ

h
, ṽh, q̃h : ud)

for all (Ũ
h
, ũh, p̃h, Ṽ

h
, ṽh, q̃h) ∈ Vh (3.5)

For space Vh, we assume the following approximation property: there exists an integer d ≥ 1
such that, for all U ∈ Hd+1(Ω)n2

, u ∈ Hd+1(Ω)n, p ∈ Hd+1(Ω), V ∈ Hd+1(Ω)n2
, v ∈

Hd+1(Ω)n and q ∈ Hd+1(Ω), one can find (Uh,uh, ph,Vh,vh, qh) ∈ Vh such that

‖U−Uh‖µ + ‖u− uh‖µ + ‖p− ph‖µ + ‖V −Vh‖µ + ‖v − vh‖µ + ‖q − qh‖µ

≤ Chd+1−µ (‖U‖d+1 + ‖u‖d+1 + ‖p‖d+1 + ‖V‖d+1 + ‖v‖d+1 + ‖q‖d+1) , (3.6)
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µ = 0, 1. Note, for example, that (3.6) can be satisfied with d = 1 by choosing continuous
piecewise linears for all variables.

3.2. Discretization error estimates. The main goal of this section is to derive error estimates
for least-squares method (3.4). For this purpose, we show how to cast nonlinear problems (3.3)
and (3.4) in the respective canonical forms

F (λ,U) ≡ U + T ·G(λ,U) = 0 (3.7)

and

F h(λ,Uh) ≡ Uh + Th ·G(λ,Uh) = 0. (3.8)

The following function spaces will be needed below (with m representing some nonnegative
integer):

Vm = [Hm+1(Ω)n2 ×Hm+1(Ω)n×Hm+1(Ω)]2 ∩V, (3.9)

Y = V∗, (3.10)

Z = [L3/2(Ω)n2 × L3/2(Ω)n × L3/2(Ω)]2, (3.11)

where V∗ denotes the dual of V with respect to the L2 inner product.
We make identifications U = (U,u, p,V,v, q), Uh = (Uh,uh, ph,Vh,vh, qh), V =

(Ũ, ũ, p̃, Ṽ, ṽ, q̃), Vh = (Ũ
h
, ũh, p̃h, Ṽ

h
, ṽh, q̃h) and λ = 1

ν , and we assume that λ ∈ Λ,
where Λ is a compact subset of R+. We then introduce the following:

T : Y 7→ V defined by U = Tg for g ∈ Y if and only if

BS(U ,V) ≡ (−(∇tU)t +∇p,−(∇tŨ)t +∇p̃) + (∇tu,∇tũ)

+ (U−∇ut, Ũ−∇ũt) + (∇(trU),∇(trŨ)) + (∇×U,∇× Ũ)

+ (−(∇tV)t +∇q,−(∇tṼ)t +∇q̃) + (∇tv,∇tṽ) (3.12)

+ (V −∇vt, Ṽ −∇ṽt) + (∇(trV),∇(trṼ)) + (∇×V,∇× Ṽ)

= (g1, Ũ) + (g2, ũ) + (g3, p̃) + (g4, Ṽ) + (g5, ṽ) + (g6, q̃)

for all (Ũ, ũ, p̃, Ṽ, ṽ, q̃) ∈ V,
Th : Y 7→ Vh defined by Uh = Tg for g ∈ Y if and only if

BS(Uh,Vh) = (g1, Ũ
h
) + (g2, ũh) + (g3, p̃

h) + (g4, Ṽ
h
) + (g5, ṽh) + (g6, q̃

h)

for all (Ũ
h
, ũh, p̃h, Ṽ

h
, ṽh, q̃h) ∈ Vh (3.13)

and G : Λ×V → Y with g = G(λ,U) for U ∈ V if and only if
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(g1, Ũ) + (g2, ũ) + (g3, p̃) + (g4, Ṽ) + (g5, ṽ) + (g6, q̃) (3.14)

=
(
− (∇tU)t +∇p,

1
ν
Ũ

t
(u + u0) +

1
ν

(U + U0)
tũ− ṽ

νβ

)

+
(1

ν
(U + U0)

t(u + u0)− v
νβ

,

− (∇tŨ)t +
1
ν
Ũ

t
(u + u0) +

1
ν

(U + U0)
tũ +∇p̃− ṽ

νβ

)

+
(
− (∇tV)t +∇q,

1
ν
Ũ(v + v0) +

1
ν

(U + U0)ṽ −
1
ν
Ṽ

t
(u + u0)− 1

ν
(V + V0)

tũ +
1
ν
ũ
)

+
(1

ν
(U + U0)(v + v0)− 1

ν
(V + V0)

t(u + u0) +
1
ν
u,

− (∇tṼ)t +
1
ν
Ũ(v + v0) +

1
ν

(U + U0)ṽ

− 1
ν
Ṽ

t
(u + u0)− 1

ν
(V + V0)

tũ +∇q̃ +
1
ν
ũ
)

for all (Ũ, ũ, p̃, Ṽ, ṽ, q̃) ∈ V.

Lemma 3.1. Assume that T , Th, and G are defined by (3.12), (3.13), and (3.14), respectively.
Then nonlinear problem (3.3) is equivalent to (3.7) and discrete nonlinear problem (3.4) is
equivalent to (3.8).

Proof. Assume that U = (U,u, p,V,v, q) solves problem (3.7) with T and G given by (3.12)
and (3.14), respectively. Then U = −Tg if and only if

BS(U ,V) = (g,V) for all V ∈ V

and g = G(λ,U) if and only if (3.14) holds. It follows that U also solves variational problem
(3.3). Conversely, if U solves (3.3), let g be defined by (3.14). Then BS(U ,V) = (g,V) for all
V ∈ V, i.e., U = −Tg. Thus, (3.3) and (3.7) are equivalent. Proof of the equivlence of (3.4)
and (3.8) is identical. ¤

Error estimates for least-squares method (3.4) will now be derived from the abstract approx-
imation theory of [10]. Below we state the main result of this theory for general T and Th,
but otherwise specialized to our needs. Here we let DUG(λ,U) and DUF (λ,U) denote the
Fréchet derivative of G and F with respect to U . We refer to {(λ,U(λ))|λ ∈ Λ} as a regular
branch of solutions of (3.7) if U = U(λ) is a weak solution of (3.7) for each λ ∈ Λ, λ 7→ U(λ)
is a continuous map Λ 7→ V, and DUF (λ,U) is an isomorphism of V.

Theorem 3.1. Let F (λ,U) = 0 denote abstract form (3.7) and assume that {(λ,U(λ))|λ ∈
Λ} is a branch of regular solutions of (3.7). Furthermore, assume that T ∈ L(Y,V), that
G is a C2 map Λ × V 7→ Y such that all second derivatives of G are bounded on bounded
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subsets of Λ×V, and that there exists a space Z ⊂ Y, with continuous imbedding, such that
DUG(λ,U) ∈ L(V,Z) for all λ ∈ Λ and U ∈ V. If approximate problem (3.8) is such that

lim
h→0

‖(T − Th)g‖V = 0 (3.15)

for all g ∈ Y and
lim
h→0

‖(T − Th)‖L(Z,V) = 0. (3.16)

Then:
1. there exists a neighborhood O of the origin in V and, for h sufficiently small, a unique

C2 function λ 7→ Uh(λ) ∈ Vh such that {(λ,Uh(λ))|λ ∈ Λ} is a branch of regular solutions
of discrete problem (3.8) and U(λ)− Uh(λ) ∈ O for all λ ∈ Λ ;

2. for all λ ∈ Λ we have

‖Uh(λ)− U(λ)‖V ≤ C‖(T − Th)G(λ,U(λ))‖V; (3.17)

3. if the regular branch is such that U(λ) ∈ Vm for some integer m ≥ 1 and d̃ ≡
min{d,m}, where d is the largest integer satisfying (3.6), then

‖U(λ)−Uh(λ)‖1 + ‖u(λ)− uh(λ)‖1 + ‖p(λ)− ph(λ)‖1

+ ‖V(λ)−Vh(λ)‖1 + ‖v(λ)− vh(λ)‖1 + ‖q(λ)− qh(λ)‖1

≤ Chd̃
(‖U(λ)‖d̃+1 + ‖u(λ)‖d̃+1 + ‖p(λ)‖d̃+1 + ‖V(λ)‖d̃+1 + ‖v(λ)‖d̃+1 + ‖q(λ)‖d̃+1

)
(3.18)

In the next few lemmas, we verify the hypotheses of Theorem3.1 for our least-squares for-
mulation. We begin by establishing essential properties of operators T and Th, which we
assume, for this and the next section, are defined by (3.12) and (3.13), respectively.

Lemma 3.2. T ∈ L(Y,V) and Th ∈ L(Y,Vh).

Proof. From BS(·, ·) is continuous and coercive on V × V (see [6]) and, by virtue of the
inclusion Vh ⊂ V, it is also continuous and coercive on Vh × Vh. Furthermore, for each
g ∈ Y, (g,V) defines a continuous functional on V. Thus, the Lax-Milgram theorem implies
that, for all g ∈ Y, variational problems (3.12) and (3.13) have unique respective solutions
U ∈ V and Uh ∈ Vh, i.e., T : Y 7→ V and Th : Y 7→ Vh are well-defined linear operators.
From

C‖U‖2
V ≤ BS(U ,U) = (g,U) ≤ ‖g‖Y‖U‖V,

it follows that
‖Tg‖V = ‖U‖V ≤ C‖g‖Y;

i.e., T is in L(Y,V). The proof that Th ∈ L(Y,Vh) is similar. ¤

Before continuing with the approximation properties of Th, consider the choice of Y and Z
in (3.10) and (3.11). When Z ⊂ Y with compact imbedding, the proof of (3.16) in Theorem3.1
can be simplified. Since L3/2(Ω) is compactly imbedded the duals of H1

0 (Ω), H1
t (Ω) = {v ∈

H1(Ω)n|n× v = 0 on Γ}, and H1(Ω), the imbedding Z ⊂ Y is compact. (see[3])
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Lemma 3.3. Convergence properties (3.15) and (3.16) hold. If, in addition, g ∈ Y is such
that Tg ∈ Vm for some m ≥ 1 and d̃ = min(d,m), where d is the largest integer satisfying
(3.6), then

‖(T − Th)g‖V ≤ Chd̃‖Tg‖
Vd̃+1 . (3.19)

Proof. It is similar to Lemma 3 in [3]. ¤

The only hypotheses of Theorem3.1 that remain to be verified are the assumptions concern-
ing the nonlinear operator G. For this purpose, we need the weak and strong forms of the first
Fréchet derivative DUG(λ,U) and second Fréchet derivative D2

UG(λ,U). To determine the
weak form of DUG(λ,U), let Û ∈ V, substitute U + Û into (3.14), and expand about U . This
yields the following weak representation of DUG(λ,U):

DUG(λ,U) : Λ×V → Y defined by g = DUG(λ,U)Û for U ∈ V if and only if

(g1, Ũ) + (g2, ũ) + (g3, p̃) + (g4, Ṽ) + (g5, ṽ) + (g6, q̃)

=
(
− (∇tU)t +∇p,

1
ν
Ũ

t
û +

1
ν
Û

t
ũ
)

+
(
− (∇tÛ)t +∇p̂,

1
ν
Ũ

t
(u + u0) +

1
ν

(U + U0)
tũ− ṽ

νβ

)

+
(1

ν
(U + U0)

t(u + u0)− v
νβ

,
1
ν
Ũ

t
û +

1
ν
Û

t
ũ
)

+
(1

ν
(U + U0)

tû +
1
ν
Û

t
(u + u0)− v̂

νβ
,

− (∇tŨ)t +
1
ν
Ũ

t
(u + u0) +

1
ν

(U + U0)
tũ +∇p̃− ṽ

νβ

)

+
(
− (∇tV)t +∇q,

1
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ν
Ûṽ − 1

ν
Ṽ

t
û− 1
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ũ
)

+
(
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1
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1
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ν
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ν
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1
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1
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Û(v + v0)− 1

ν
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tũ +∇q̃ +
ũ
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(3.20)

for all (Ũ, ũ, p̃, Ṽ, ṽ, q̃) ∈ V.
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The strong form of DUG(λ,U)Û can be found from (3.20) using standard integration by
parts:

g1 =
1
ν
û
(
− (∇tU)t +∇p +

1
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(3.21)
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)
(3.23)
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g4 = −1
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t
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)
(3.26)

for all (Ũ, ũ, p̃, Ṽ, ṽ, q̃) ∈ V.
Finally, the weak form of the second Fréchet derivative is D2

UG(λ,U) : Λ× [V×V] → Y

defined by g = D2
UG(λ,U)[Û ,

ˆ̂U ] for U ∈ V if and only if
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Ũ(v + v0)

+
1
ν

(U + U0)ṽ −
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(3.27)

for all (Ũ, ũ, p̃, Ṽ, ṽ, q̃) ∈ V.
The next lemma summarizes technical results that we use below.

Lemma 3.4. Let Di denote the derivative with respect to the ith coordinate variable in Rn,
1 ≤ i ≤ n, and assume that u, v, w, and z are in H1(Ω). Then

∣∣∣∣
∫

Ω
Diu v w dΩ

∣∣∣∣ ≤ C‖u‖1‖v‖1‖w‖1, (3.28)

1 ≤ i ≤ n, and ∣∣∣∣
∫

Ω
u v w z dΩ

∣∣∣∣ ≤ C‖u‖1‖v‖1‖w‖1‖z‖1. (3.29)

Moreover, (u, v) 7→ uv is a continuous bilinear mapping from L2(Ω) ×H1(Ω) into L3/2(Ω)
and (u, v, w) 7→ uvw is a continuous trilinear mapping from H1(Ω) ×H1(Ω) ×H1(Ω) into
L3/2(Ω); i.e.,

‖uv‖0,3/2 ≤ C‖u‖0,2‖v‖1,2 for all u ∈ L2(Ω) and v ∈ H1(Ω), (3.30)

‖uvw‖0,3/2 ≤ C‖u‖1,2‖v‖1,2‖w‖1,2 ∀u, v, w ∈ H1(Ω). (3.31)

Proof. It is similar to Lemma 4 in [3]. The first part of the lemma follows easily from the
imbedding H1(Ω) ⊂ L4(Ω) in two and three dimensions and the Hölder inequality. The
second part follows directly from a result in [10](see Corollary 1.1, p. 5). ¤

In the next lemma, we establish properties of G that are required for the validity of the
approximation result in Theorem3.1.

Lemma 3.5. Assume that mapping G is defined by (3.14). For V,Y, and Z given by (3.2),
(3.10) and (3.11), respectively, the following are true.

1. For all U ∈ V, DUG(λ,U) ∈ L(V,Z).
2. The second Fréchet derivative D2

UG(λ,U) is bounded on bounded subsets of Λ×V.

Proof. To prove 1, consider strong form (3.21)–(3.26) of DUG(λ,U). By assumption, U ∈
V; i.e., U ∈ H1(Ω)n2

, u ∈ H1(Ω)n, p ∈ H1(Ω), V ∈ H1(Ω)n2
, v ∈ H1(Ω)n, and

q ∈ H1(Ω). Now each equation (3.21)–(3.25) and (3.26) consists of terms of the form Diuv
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and uvw, where u, v, and w belong to H1(Ω), so the second part of Lemma3.4 implies that
(g1,g2,g3,g4,g5,g6) ∈ Z. Using (3.30) and (3.31), it also follows that

‖DUG(λ,U)Û‖Z ≤ C‖Û‖V, (3.32)

i.e., that DUG(λ,U) ∈ L(V,Z).
To prove 2, consider weak form (3.27) of the second Fréchet derivative. Assume that (λ,U)

belongs to a bounded subset of Λ ×V and let Û , ˆ̂U ∈ V be arbitrary. Then it is not difficult
to see that weak form (3.27) involves only terms of the form Diuvw and uvwz, where u, v, w,
and z belong to H1(Ω). Thus, each term can be estimated using (3.28) or (3.29):

|(g1, Ũ)| ≤ C1(λ,U ,U0)(‖Û‖V + ‖ ˆ̂U‖V)‖Ũ‖1,

|(g2, ũ)| ≤ C2(λ,U ,U0)(‖Û‖V + ‖ ˆ̂U‖V)‖ũ‖1,

|(g3, p̃)| ≤ C3(λ,U ,U0)(‖Û‖V + ‖ ˆ̂U‖V)‖p̃‖1,

|(g4, Ṽ)| ≤ C4(λ,U ,U0)(‖Û‖V + ‖ ˆ̂U‖V)‖Ṽ‖1,

|(g5, ṽ)| ≤ C5(λ,U ,U0)(‖Û‖V + ‖ ˆ̂U‖V)‖ṽ‖1,

|(g6, q̃)| ≤ C6(λ,U ,U0)(‖Û‖V + ‖ ˆ̂U‖V)‖q̃‖1

where Ci is polynomial function of λ, ‖U‖V, and ‖U0‖V. In combination with the fact that λ
and ‖U‖V are in bounded subsets of Λ×V, and that ‖U0‖V is fixed, it follows that D2

UG(λ,U)
is bounded in the norm of L(V, L(V, Y)). ¤

This completes verification of all assumptions of Theorem3.1. As a result, we can conclude
that error estimates (3.17) and (3.18) hold for the least-squares finite element approximation as
long as problem (3.3) has a regular branch of solutions with sufficient regularity.
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