DOI QR코드

DOI QR Code

SOLVING A MATRIX POLYNOMIAL BY NEWTON'S METHOD

  • Han, Yin-Huan (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY) ;
  • Kim, Hyun-Min (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
  • Received : 2010.05.26
  • Accepted : 2010.06.03
  • Published : 2010.06.25

Abstract

We consider matrix polynomial which has the form $P_1(X)=A_oX^m+A_1X^{m-1}+...+A_m=0$ where X and $A_i$ are $n{\times}n$ matrices with real elements. In this paper, we propose an iterative method for the symmetric and generalized centro-symmetric solution to the Newton step for solving the equation $P_1(X)$. Then we show that a symmetric and generalized centro-symmetric solvent of the matrix polynomial can be obtained by our Newton's method. Finally, we give some numerical experiments that confirm the theoretical results.

Keywords

References

  1. Attahiru Sule Alfa, Combinded elapsed time and matrix-analytic method for the discrete time GI/G/I and GIX/G/I systems, Qucucing Systems, 45 (2003), 5-25.
  2. N. G. Bean, L. Bright, G. Latouche, C. E. M. Pearce, P. K. Pollett, and P. G. Taylor, The quasi-stationary behavior of quasi-birth-death processes, The Annals of Applied Probability, 7(1) (1997), 134-155. https://doi.org/10.1214/aoap/1034625256
  3. G. J. Butler, C. R. Johnson, and H. Wolkowicz, Nonnegative solutions of a quadratic matrix equation arising from comparison theorems in ordinary, SIAM J. Alg. Disc. Meth., 6(1) (1985), 47-53. https://doi.org/10.1137/0606005
  4. H. Dai, On the symmetric solutions of linear matrix equations, Linear Algebra and Appl., 131 (1990), 1-7. https://doi.org/10.1016/0024-3795(90)90370-R
  5. George J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Stat. Comput., 2(2) (1981), 164-175. https://doi.org/10.1137/0902014
  6. Mehdi Dehghan and Masoud Hajarian, Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation $A_1X_1B_1\:+\:A_2X_2B_2$ = C, Mathematical and Computer Modeling, 49 (2009), 1937-1959. https://doi.org/10.1016/j.mcm.2008.12.014
  7. J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, The algebraic theory of matrix polynomials, SIAM J. Numer. Anal., 13(6) (1976), 831-845. https://doi.org/10.1137/0713065
  8. J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, Algorithms for solvents of matrix polynomials, SIAM J. Numer. Anal., 15(3) (1978), 523-533. https://doi.org/10.1137/0715034
  9. I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
  10. Nicholas J. Higham and Hyun-Min Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal., 20(4) (2000), 499-519. https://doi.org/10.1093/imanum/20.4.499
  11. Chu K.E, Symmetric solutions of the linear matrix equations by matrix decompositions, Linear Algebra and Appl., 119 (1989), 35-50. https://doi.org/10.1016/0024-3795(89)90067-0
  12. Hyun-Min Kim, Convergence of newton's method for solving a class of quadratic matrix equations, Honam Mathematical Journal, 30(2) (2008), 399-409. https://doi.org/10.5831/HMJ.2008.30.2.399
  13. W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal., 7 (1987), 355-369. https://doi.org/10.1093/imanum/7.3.355
  14. P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, 2nd ed, Academic Press, New York, 1982.
  15. Peter Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.
  16. Maolin Liang, Lifang Dai, and Sanfu Wang, An iterative method for (R,S)-symmetric solution of matrix equation $A{\times}B$ = C, Sci. Magna., 4 (2008) , 60-70.
  17. Maolin Liang, Chuanhua You, and Lifang Dai, An efficient algorithm for the generalized centro-symmetric solution of matrix equation $A{\times}B$ = C, Numer. Algor., 44 (2007), 173-184. https://doi.org/10.1007/s11075-007-9097-z
  18. Cleve Moler and Peter J. Costa, Symbolic Math Toolbox Version 2: User's Guide, The MathWorks, Inc, Natick, MA, USA, 1998.
  19. Jong Hyeon Seo and Hyun-Min Kim, Solving matrix polynomials by Newton's method with exact line searches, J. KSIAM, 12 (2008), 55-68.
  20. X. Y. Peng, X. Y. Hu, and L. Zhang, An iterative method for symmetric slutions and the optimal approximation solution of the matrix equation $A{\times}B$ = C, Appl. Math. Comput., 160 (2005), 763-777. https://doi.org/10.1016/j.amc.2003.11.030