References
- Allen, J. and Murray, A. (1993). Development of a neural network screening aid for diagnosing lower limb peripheral vascular disease from photoelectric plethysmography pulse waveforms. Physiological Measurement, 14, 13-22. https://doi.org/10.1088/0967-3334/14/1/003
- Christianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines, Cambridge University Press, Cambridge.
- Guler, N. F. and Kocer, S. (2005). Use of support vector machines and neural network in diagnosis of neuromuscular disorders. Journal of Medical System, 29, 271-84. https://doi.org/10.1007/s10916-005-5187-4
- Hedeker, D. and Gibbons, R. D. (2006). Longitudinal data Analysis, John Wiley & Sons, New York.
- Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334.
- Liu, H. X., Zhang, R. S., Luan, F., Yao, X. J., Liu, M. C., Hu, Z. D. and Fan, B. T. (2003). Diagnosing breast cancer based on support vector machines. Journal of Chemical Information and Computer Sciences, 43, 900-907. https://doi.org/10.1021/ci0256438
- Mercer, J. (1909). Functions of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society, A, 415-446.
- Shim, J. and Lee, J. T. (2009). Kernel method for autoregressive data. Journal of Korean Data & Information Science Society, 20, 949-964 .
- Shim, J., Park, H. J. and Seok, K. H. (2008). Kernel Poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360.
- Shim, J. and Seok, K. H. (2009). Variance function estimation with LS-SVM for replicated data. Journal of Korean Data & Information Science Society, 20, 925 -931
- Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Suykens, J. A. K., Vanderwalle, J. and De Moor, B. (2001) Optimal control by least squares support vector machines. Neural Networks, 14, 23-35. https://doi.org/10.1016/S0893-6080(00)00077-0
- Vapnik, V. N. (1998). Statistical learning theory, John Wiley, New York.
- Wahba, G. (1990). Spline models for observational data. SIAM, Philadelphia. CMMS-NSF Regional Conference Series in Applied Mathematics, 59.