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Abstract

In this paper, we consider a versatile test based on percentile tests. The versatile
test may be useful when the underlying distributions are unknown or quite different
types. We consider two kinds of combining functions for the percentile statistics, the
quadratic and summing forms and obtain the limiting distributions under the null
hypothesis. Then we illustrate our procedure with an example. Finally we discuss
some interesting features of the test as concluding remarks.
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1. Introduction

When taking comparison study between two kinds of treatments, one may use two- sample
t-test under the normality assumption or a nonparametric test only by assuming continuity
of the underlying distributions under some specific model. There have been proposed sev-
eral nonparametric tests for the two-sample problem (Randles and Wolfe, 1979) and for the
consideration of the power of test, one may choose suitable one according as the underlying
distribution. For this direction, one may apply the Wilcoxon rank sum test for the logis-
tic and the median test, for the double exponential under the location translation model.
Park and Kim (2009) considered testing problem for the multi- sample case under the loca-
tion translation model. Also Hong and Kim (2009) applied the nonparametric test for the
credit rating model validation. The location translation implies that the difference between
quantile points of the two distribution functions remains same all the time. However this
assumption may be violated when the effect of some new treatment may appear initial stage
of treatment but disappears as time goes or may appear after some time passes by. There-
fore in this case, the nonparametric test procedure based on the location translation model
may incur some loss of power.

Several authors have been considered some simultaneous use of several nonparametric test
statistics when the underlying distributions are not certain. For example, as we have already
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mentioned, Wilcoxon rank sum and median tests are locally most powerful for the logistic
and double exponential distributions, respectively. Therefore when one is not sure about the
underlying distribution, one may apply both the statistics together using some combining
function. In this direction, Lee (1996), Chi and Tsai (2001) and Wu and Gilbert (2002)
proposed several nonparametric testing procedures for the survival data. Also Fleming and
Harrington (1991) considered extensively the use and efficiency of these test procedures.
They termed this test procedure as the versatile test.

In this study, we consider a test procedure based on the percentile test statistics in the
spirit of the versatile test. In the next section, we introduce the test statistics with quadratic
and summing forms for combining functions for the quantile functions. Also we derive the
limiting distribution under the null hypothesis for obtaining the critical value or p -value.
For obtaining the p -value, we also consider the permutation principle (Good, 2001). Then
we illustrate our procedure with an example and discuss some interesting features of our
test as concluding remarks.

2. Some versatile test

Suppose that we have two independent random samples, X1, . . . , Xm and Y1, . . . , Yn with
continuous distribution functions F and G, respectively. For any p, 0 < p < 1, let rp =
[Np] + 1, where N = m+n and [x] means the largest integer which does not exceed the real
number x. Also let R1, . . . , Rm be the ranks of X1, . . . , Xm from the combined sample of
X1, . . . , Xm and Y1, . . . , Yn together. Then a p th percentile test statistic TN (p) for testing
H0 : F = G can be defined as

TN (p) =

m∑
i=1

I(Ri ≤ rp),

where I(•) is an indicator function. We note that when p = 1/2, TN (1/2) is the well- known
Mood type median test statistic (Mood, 1950). Let ξp be the p th quantile of F . Then
roughly speaking, since the statistic TN (p)/m can be considered as a consistent estimate
of F (ξp) under H0 : F = G, the test based on TN (p) may be effective for detectection of
the difference between the two p th quantiles of F and G. Therefore when the difference
in quantiles of F and G seems to appear in the early stage of experiment, one may choose
p such as 0 < p < 1/2 and 1/2 < p < 1 when it does to appear in the later stage of
experiment. If one may not be sure when the difference happens, one may try to use several
p’s simultaneously to ensure to detect any difference. With this in mind, for a versatile test,
we may choose d number of pj ’s such that 0 < p1 < . . . < pd < 1 and make use of them
simultaneously for testing H0 : F = G. For this purpose, let TN (pj) be the pj th quantile
test statistic, j = 1, . . . , d. Since TN (pj) is a linear rank statistic (Randles and Wolfe, 1979)
for each j, j = 1, . . . , d, one may obtain easily the expectation and variance of TN (p) under
H0 : F = G, as

E0 (TN (pj)) = m
rpj

N
and V0 (TN (pj)) =

mn

N − 1

rpj
(N − rpj

)

N2
.

Also for j < k, we need the covariance between TN (pj) and TN (pk) under H0 : F = G,
which can be obtained as follows:
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Lemma 1. Under H0 : F = G, we have the covariance between TN (pj) and TN (pk) as

COV0 (TN (pj), TN (pk)) =
mn

N − 1

rpj
(N − rpk

)

N2
.

Proof. First of all, we note that for any pair j and k such that 1 ≤ j < k ≤ d, we have{
m∑
i=1

I(Ri ≤ rpj
)

}{
m∑
i=1

I(Ri ≤ rpk
)

}
=

m∑
i=1

I(Ri ≤ rpj
) +

∑∑
i 6=l
I(Ri ≤ rpj

)I(Rl ≤ rpk
).

Also we note that

E0

(
I(R1 ≤ rpj )

)
= Pr

0

{
R1 ≤ rpj

}
=
rpj

N

and E0

(
I(R1 ≤ rpj

)I(R2 ≤ rpk
)
)

= Pr0
{
R1 ≤ rpj

, R2 ≤ rpk

}
=
rpj

(rpk
− 1)

N(N − 1)
.

Then from the fact

COV0 (TN (pj), TN (pk)) = E0 (TN (pj)TN (pk))− E0 (TN (pj))E0 (TN (pk))

we obtain the result by manipulating algebraically.
Now we consider the standardized form for each j as follows:

ZN (pj) =
TN (pj)− E0 (TN (pj))√

V0 (TN (pj))
.

It is well-known that for each j, the distribution of ZN (pj) converges in distribution to
the standard normal distribution. Then there are several ways to combine the d number
of standardized form of the univariate percentile statistics. If there is no more information
about F and G in advance, then it would be appropriate to consider the general or two-sided
alternative H1 : F 6= G. This in turn makes us to consider a quadratic form. Then we note
that the covariance between ZN (pj) and ZN (pk) under H0 : F = G for j < k is of the form

COV0 (ZN (pj), ZN (pk)) =
rpj

(N − rpk
)√

rpjrpk
(N − rpj )(N − rpk

)
= ρjkN .

Also let PN be the covariance matrix whose component is 1 if j = k and ρjkN , 1 ≤ j < k ≤
d and ZN = (ZN (p1), . . . , ZN (pd))

T
, where ()

T
means the transpose of a vector or matrix.

Then we can propose a versatile test statistic for testing H0 : F = G against H1 : F 6= G
with the assumption that PN is positive definite as

QN (p) = ZT
NP−1N ZN ,

where P−1N is the inverse of PN . Then for large value of QN (p), we may reject H0 : F = G
in favor of H1 : F 6= G . For any given significance level α, in order to have the critical value
CN (α) or more generally, p -value, we should have the null distribution of QN (p). This
can be done by applying the permutation principle for small or reasonable sample sizes.
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However for large sample case, one can obtain the asymptotic distribution using the large
sample approximation. We begin this matter by showing that ρjkN converges to ρjk, where

ρjk =

√
pj

pk

1− pk
1− pj

.

�
Lemma 2. The covariance ρjkN converges to ρjk.
Proof. First of all, we note that

ρjkN =
rpj

(N − rpk
)√

rpj
rpk

(N − rpj
)(N − rpk

)
=

√
rpj

(N − rpk
)

rpk
(N − rpj

)
.

Then the result follows easily by noting that rpj/N → pj and rpk
/N → pk.

Now we have our main result in the following theorem. �
Theorem 1. With the assumption that m/N → λ as min {m,n} → ∞ and assuming that

PN is positive definite, QN (p) converges in distribution to a chi-square distribution with d
degrees of freedom under H0 : F = G.

Proof. For each component j, it is well-known that under H0 : F = G, ZN (pj) converges
in distribution to a standard normal distribution with the assumption that m/N → λ
as min {m,n} → ∞. Therefore from the Cramer-Wold device (Mardia et al., 1979) and
Slutsky’s theorem with Lemma 2 and the assumption that PN is positive definite, we have
the result.

If someone believes that F (x) ≥ G(x) for all x ∈ R1, then one may consider different type
of statistics rather than the quadratic form itself. Also the corresponding alternative would
be

H1 : F (x) ≥ G(x) with strict inequality for some x ∈ R1. (2.1)

The alternative (2.1) is one-sided. Therefore it would be better to consider the following
form SN (p) for the test statistic rather than the quadratic form.

SN (p) =
d∑

j=1

ZN (pj).

Since if (2.1) is true, then ZN (pj) tends to have large positive value for all j, for large values
of SN (p) H0 : F = G would be rejected in favor of the alternative (2.1). For the completion
of test procedure, one needs the null distribution of SN (p). For small or reasonable sample
sizes, one may easily obtain the exact null distribution by applying the permutation principle.
Park and Kim (2008) applied the permutation principle for testing multivariate data. For
the large sample case, we may obatin the limiting distribution from Theorem 1 as follows.
�

Theorem 2. With the assumption that m/N → λ as min {m,n} → ∞ SN (p) converges
in distribution to a normal random variable with mean 0 and variance σ2

S under H0 : F =
G,where

σ2
S = d+ 2

∑∑
1≤j<k≤d

ρjk.
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Proof. This result follows easily from the proof of Theorem 1 by taking a vector l =
(1, . . . , 1)T during application of Cramer-Wold device. �

3. An example and concluding remarks

The following data set in Table 1 is the perceived degree of job satisfaction measured by
a proper psychological index consisting of a sum of a finite sub-responses each related to a
specific sub-aspect among individuals classified as extroverted (X) and introverted (Y ) in
Pesarin (2001). Here m = 12, n = 8 and N = 20. Then it is of interest to test whether
there exists any difference between the two groups, X and Y .

Table 3.1 Job-satisfaction

X 66 57 81 62 61 60 73 59 80 55 67 70
Y 64 58 45 43 37 56 44 42

For this we consider the quartile points such as the first (p1), second (or median) (p2) and
third (p3). In other words, let p1 = 0.25, p2 = 0.5 and p3 = 0.75 be chosen. Then r0.25 = 5,
r05 = 10 and r.75 = 15. Thus we have that T20(.25) = 0, T20(.5) = 2 and T20(.75) = 7. Also
we have that

E0(T20(.25)) = 3, E0(T20(.5)) = 6andE0(T20(.75)) = 9

V0 (T20(.25)) =
18

19
, V0 (T20(.5)) =

24

19
andV0 (T20(.75)) =

18

19

COV0 (T20(.25), T20(.5)) =
12

19
, COV0 (T20(.5), T20(.75)) =

12

19
and

COV0 (T20(.25), T20(.75)) =
6

19
.

Thus we have that

Z20(.25) =
− 3√
18/19

= −

√
19

2
, Z20(.50) =

− 4√
24/19

= −

√
38

3
Z20(.75) =

− 2√
18/19

= −

√
38

9

and Q20(p) = 14.25 and S20(p) = −3.557. Then the respective p -values are 0.0026 and
0.0004, which show the strong evidence of difference between two groups. We note that we
considered two-sided test for the test procedure based on S20(p).

For the null distribution of test statistics, mainly we have considered the limiting distribu-
tion with large sample approximation theory. Also one may consider applying the permuta-
tion principle (Good, 2000). In this case, it is customary that one may take the Monte-Carlo
approach for obtaining p-values because of the excessive computational burdens when one
tries to obtain the exact probabilities. Therefore the permutation principle relies heavily on
the computer capability. For the one-sided test, one may use the maximal type of statistic

MN (p) = max {ZN (p1), . . . , ZN (pd)}
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or Reiny type of statistic (Shorack and Wellner, 1986)

RN (p) = sup0<p<1 {itp : ZN (p)} .

However the limiting distributions for these statistics are not easily available since that
of MN (p) is d -variate normal and that of RN (p), non-normal. Then in this case, it is
recommendable to apply the permutation principle to obtain the p -value. We have obtained

an approximate p -value for MN (p) as Pr
{
M20(p) ≤ −

√
38/3

}
= 0.00000079 by applying

the permutation principle.
For the re-sampling method for the hypothesis test, one may also consider the bootstrap

method. While the permutation method re-samples without replacement, the bootstrap
method does with replacement. However the results between two methods are known to be
considerably different (Good, 2000).
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