DOI QR코드

DOI QR Code

Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material

  • Kim, Eun-Seok (Department of Oral & Maxillofacial Surgery, College of Medicine, Chungnam National University) ;
  • Kim, Jae-Jin (Department of Oral & Maxillofacial Surgery, College of Medicine, Chungnam National University) ;
  • Park, Eun-Jin (Division of Prosthodontics, School of Medicine, Ewha Womans University)
  • Received : 2010.02.25
  • Accepted : 2010.03.09
  • Published : 2010.03.31

Abstract

Although most researchers agree that platelet-rich plasma (PRP) is a good source of autogenous growth factors, its effect on bone regeneration is still controversial. The purpose of this study was to evaluate whether increasing angiogenic factors in the human PRP to enhance new bone formation through rapid angiogenesis. MATERIAL AND METHODS. In vitro, the human platelets were activated with application of shear stress, $20\;{\mu}g/ml$ collagen, 2 mM $CaCl_2$ and 10U thrombin/$1\;{\times}\;10^9$ platelets. Level of vascular endothelial growth factor (VEGF) and platelet microparticle (PMP) in the activated platelets were checked. In the animal study, human angiogenic factors-enriched PRP was tested in 28 athymic rat's cranial critical bone defects with $\beta$-TCP. Angiogenesis and osteogenesis were evaluated by laser Doppler perfusion imaging, histology, dual energy X-ray densinometry, and micro-computed tomography. RESULTS. In vitro, this human angiogenic factors-enriched PRP resulted in better cellular proliferation and osteogenic differentiation. In vivo, increasing angiogenic potential of the PRP showed significantly higher blood perfusion around the defect and enhanced new bone formation around acellular bone graft material. CONCLUSION. Angiogenic factor-enriched PRP leads to faster and more extensive new bone formation in the critical size bone defect. The results implicate that rapid angiogenesis in the initial healing period by PRP could be supposed as a way to overcome short term effect of the rapid angiogenesis.

Keywords

References

  1. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:638-46. https://doi.org/10.1016/S1079-2104(98)90029-4
  2. Butterfield KJ, Bennett J, Gronowicz G, Adams D. Effect of platelet-rich plasma with autogenous bone graft for maxillary sinus augmentation in a rabbit model. J Oral Maxillofac Surg 2005;63:370-6. https://doi.org/10.1016/j.joms.2004.07.017
  3. Pryor ME, Polimeni G, Koo KT, Hartman MJ, Gross H, April M, Safadi FF, WikesjoUM. Analysis of rat calvaria defects implanted with a platelet-rich plasma preparation: histologic and histometric observations. J Clin Periodontol 2005;32:966-72. https://doi.org/10.1111/j.1600-051X.2005.00772.x
  4. Raghoebar GM, Schortinghuis J, Liem RS, Ruben JL, van der Wal JE, Vissink A. Does platelet-rich plasma promote remodeling of autologous bone grafts used for augmentation of the maxillary sinus floor? Clin Oral Implants Res 2005;16:349-56. https://doi.org/10.1111/j.1600-0501.2005.01115.x
  5. Furst G, Gruber R, Tangl S, Zechner W, Haas R, Mailath G, Sanroman F, Watzek G. Sinus grafting with autogenous plateletrich plasma and bovine hydroxyapatite. A histomorphometric study in minipigs. Clin Oral Implants Res 2003;14:500-8. https://doi.org/10.1034/j.1600-0501.2003.00859.x
  6. Grageda E. Platelet-rich plasma and bone graft materials: a review and a standardized research protocol. Implant Dent 2004;13:301-9. https://doi.org/10.1097/01.id.0000148555.91063.06
  7. Suba Z, Takacs D, Gyulai-Gaal S, Kovacs K. Facilitation of betatricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs: a histologic and histomorphometric study. Int J Oral Maxillofac Implants 2004;19:832-8.
  8. Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res 2005;20:848-57.
  9. Chow KM, Rabie AB. Vascular endothelial growth pattern of endochondral bone graft in the presence of demineralized intramembranous bone matrix--quantitative analysis. Cleft Palate Craniofac J 2000;37:385-94. https://doi.org/10.1597/1545-1569(2000)037<0385:VEGPOE>2.3.CO;2
  10. Rabie AB, Chow KM, Wong RW. Demineralized intramembranous bone matrix augments the healing of endochondral bone graft. Int J Adult Orthodon Orthognath Surg 1999;14:185-97.
  11. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002;99:9656-61. https://doi.org/10.1073/pnas.152324099
  12. Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 2002;30:472-7. https://doi.org/10.1016/S8756-3282(01)00690-1
  13. Schlegel KA, Zimmermann R, Thorwarth M, Neukam FW, Klongnoi B, Nkenke E, Felszeghy E. Sinus floor elevation using autogenous bone or bone substitute combined with plateletrich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:e15-25. https://doi.org/10.1016/j.tripleo.2007.04.021
  14. Borrelli V, Sterpetti AV, Coluccia P, Randone B, Cavallaro A, Santoro D'Angelo L, Cucina A. Bimodal concentration-dependent effect of thrombin on endothelial cell proliferation and growth factor release in culture. J Surg Res 2001;100:154-60. https://doi.org/10.1006/jsre.2001.6231
  15. Karp JM, Tanaka TS, Zohar R, Sodek J, Shoichet MS, Davies JE, Stanford WL. Thrombin mediated migration of osteogenic cells. Bone 2005;37:337-48. https://doi.org/10.1016/j.bone.2005.04.022
  16. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999;103:159-65. https://doi.org/10.1172/JCI5028
  17. Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 1999;30:111-42. https://doi.org/10.1016/S1040-8428(98)00044-4
  18. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004;124:376-84. https://doi.org/10.1046/j.1365-2141.2003.04773.x
  19. Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002;106:2019-25. https://doi.org/10.1161/01.CIR.0000031332.45480.79
  20. Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 1996;88:3456-64.
  21. Holme PA, Solum NO, Brosstad F, Roger M, Abdelnoor M. Demonstration of platelet-derived microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique and western blotting. Thromb Haemost 1994;72:666-71.
  22. Park EJ, Kim ES, Weber H-P, Wright RF, Mooney DJ. Improved bone healing by angiogenic-facotr enriched platelet-rich plasma and its synergistic enhancement by bone morphogenic protein-2. Int J Oral Maxillofac Impl 2008;23:818-26.
  23. Roussy Y, Bertrand Duchesne MP, Gagnon G. Activation of human platelet-rich plasmas: effect on growth factors release, cell division and in vivo bone formation. Clin Oral Implants Res 2007;18:639-48. https://doi.org/10.1111/j.1600-0501.2007.01385.x
  24. Martineau I, Lacoste E, Gagnon G. Effect of calcium and thrombin on growth factor release from platelet concentrates: kinetics and regulation of endothelial cell proliferation. Biomaterials 2004;25:4489-502 https://doi.org/10.1016/j.biomaterials.2003.11.013
  25. Maloney JP, Sillimann CC, Ambruso DR, Wang J, Tuder RM, Voelkel NF. In vitro release of vascular endothelial growth factor during platelet aggregation. Am J Physiol 1998;275:H1054-61.
  26. Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, Watzek G. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets 2004;15:29-35. https://doi.org/10.1080/09537100310001643999
  27. Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ. Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J 2005;19:665-7.
  28. Kowalski MJ, Schemitsch EH, Kregor PJ, Senft D, Swiontkowski MF. Effect of periosteal stripping on cortical bone perfusion: a laser Doppler study in sheep. Calcif Tissue Int 1996;59:24-6. https://doi.org/10.1007/s002239900080
  29. Zammaretti P, Zisch AH. Adult' endothelial progenitor cells'. Renewing vasculature. Int J Biochem Cell Biol 2005; 37:493-503. https://doi.org/10.1016/j.biocel.2004.06.018
  30. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002;283:H2411-9. https://doi.org/10.1152/ajpheart.01098.2001

Cited by

  1. Cortical Tenting Technique Versus Onlay Layered Technique for Vertical Augmentation of Atrophic Posterior Mandibles : A Split-Mouth Pilot Study vol.22, pp.6, 2010, https://doi.org/10.1097/01.id.0000433590.33926.af
  2. Clinical Importance of Recipient Site Characteristics for Vertical Ridge Augmentation: A Systematic Review of Literature and Proposal of a Classification vol.39, pp.3, 2010, https://doi.org/10.1563/aaid-joi-d-11-00210
  3. Research Progress in the Mechanism of Effect of PRP in Bone Deficiency Healing vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/134582
  4. Use of an Antifibrotic Agent Improves the Effect of Platelet-Rich Plasma on Muscle Healing After Injury vol.95, pp.11, 2010, https://doi.org/10.2106/jbjs.l.00266
  5. Application of Platelet-Rich Plasma and Platelet-Rich Fibrin in Fat Grafting: Basic Science and Literature Review vol.20, pp.4, 2014, https://doi.org/10.1089/ten.teb.2013.0317
  6. A Systematic Assessment of the Use of Platelet-Rich Plasma in Spinal Fusion vol.43, pp.5, 2010, https://doi.org/10.1007/s10439-015-1300-0
  7. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction vol.52, pp.2, 2015, https://doi.org/10.1007/s12035-015-9251-x
  8. Blood clot formed on rough titanium surface induces early cell recruitment vol.27, pp.8, 2010, https://doi.org/10.1111/clr.12672
  9. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function? vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/6140239
  10. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration vol.5, pp.None, 2017, https://doi.org/10.3389/fchem.2017.00089
  11. Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells vol.66, pp.1, 2017, https://doi.org/10.3233/ch-160203
  12. Preliminary Results of Bone Regeneration in Oromaxillomandibular Surgery Using Synthetic Granular Graft vol.2018, pp.None, 2010, https://doi.org/10.1155/2018/8503427