발광 나노입자 및 바이오 응용

  • 양희선 (홍익대학교 공과대학 신소재공학과) ;
  • 김종욱 (홍익대학교 공과대학 신소재공학과) ;
  • 변호준 (홍익대학교 공과대학 신소재공학과)
  • Published : 2010.02.28

Abstract

Keywords

References

  1. A. L. Rogach, A. Kornowski, M. Y. Gao, A. Eychmuller and H. Weller, J. Phys. Chem. B, 103, 3065 (1999). https://doi.org/10.1021/jp984833b
  2. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). https://doi.org/10.1021/ja00072a025
  3. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996).
  4. B. O. Dabbousi, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 101, 9463 (1997). https://doi.org/10.1021/jp971091y
  5. D. C. Pan, Q. Wang, S. C. Jiang, X. L. Ji and L. J. An, Adv. Mater., 17, 176 (2005). https://doi.org/10.1002/adma.200401425
  6. J. M. Klostranec and W. C. W. Chan, Adv. Mater., 18, 1953 (2006). https://doi.org/10.1002/adma.200500786
  7. H. S. Chen, B. Lo, J. Y. Hwang, G. Y. Chang, C. M. Chen, S. J. Tasi and S. J. J. Wang, J. Phys. Chem. B, 108, 17119 (2004). https://doi.org/10.1021/jp047035w
  8. J. M. Tsay, M. Pflughoefft, L. A. Bentolila and S. Weiss, J. Am. Chem. Soc., 126, 1926 (2004). https://doi.org/10.1021/ja039227v
  9. O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas and A. J. Nozik, J. Phys. Chem. B, 101, 4904 (1997). https://doi.org/10.1021/jp9704731
  10. J.U. Kim, J. J. Lee, H. S. Jang, D. Y. Jeon and H. Yang, J. Nanosci. Nanotechnol. , in press.
  11. Y. A. Yang, O. Chen, A. Angerhofer and Y. C. Cao, J. Am. Chem. Soc., 128, 12428 (2006). https://doi.org/10.1021/ja064818h
  12. J. U. Kim, M. H. Lee and H. Yang Nanotechnol., 19, 465605 (2008). https://doi.org/10.1088/0957-4484/19/46/465605
  13. C. Li, M. Ando, H. Enomoto and N. Murase J. Phys. Chem. C , 112, 20190 (2008). https://doi.org/10.1021/jp805491b
  14. L. Li, J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem and P. Reiss, Chem. Mater., 21, 2422 (2009). https://doi.org/10.1021/cm900103b
  15. D. V. Talapin, N. Gaponik, H. Borchert, A. L. Rogach, M. Haase and H. Weller, J. Phys. Chem. B , 106, 12659 (2002). https://doi.org/10.1021/jp026380n
  16. O. I. Micic, J. Sprague, Z. H. Lu and A. J. Nozik, Appl. Phys. Lett., 68, 3150 (1996). https://doi.org/10.1063/1.115807
  17. S. Xu, J. Ziegler and T. Nann, J. Mater. Chem., 18, 2653 (2008). https://doi.org/10.1039/b803263g
  18. J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. T. Qian, J. Mater. Chem., 11, 1417 (2001). https://doi.org/10.1039/b100092f
  19. X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J.Chen and P. Shen, J. Am. Chem. Soc., 128, 7222 (2006). https://doi.org/10.1021/ja0580845
  20. M. A. Malik, P. O'Brien and N. Revaprasadu, Adv. Mater., 11, 1441 (1999). https://doi.org/10.1002/(SICI)1521-4095(199912)11:17<1441::AID-ADMA1441>3.0.CO;2-Z
  21. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater., 15, 3142 (2003). https://doi.org/10.1021/cm034161o
  22. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, J. Phys. Chem. B, 108, 12429 (2004). https://doi.org/10.1021/jp049107p
  23. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. O. Matsuo, M. Miyazaki and H. Maeda, Chem. Mater., 18, 3330 (2006). https://doi.org/10.1021/cm0518022
  24. T.Torimoto, T. Adachi, -i. K. Okazaki, M. Sakuraoka, T. Shibayama, B.Ohtani, A. Kudo and S. Kuwabata, J. Am. Chem. Soc., 129, 12388 (2007). https://doi.org/10.1021/ja0750470
  25. P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 130, 9240 (2008). https://doi.org/10.1021/ja8036349
  26. L. Li, J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem and P. Reiss, Chem. Mater., 21, 2422 (2009). https://doi.org/10.1021/cm900103b
  27. M. Chang and S. Tie, Nanotechnol., 19, 075711 (2008). https://doi.org/10.1088/0957-4484/19/7/075711
  28. G. H. Pan, H. W. Song, X. Bai, Z. X. Liu and H. Q. Yu, Chem. Mater., 18, 4526 (2006). https://doi.org/10.1021/cm061077a
  29. K. Riwotzki, H. Meyssamy, A. Kornowski and M. Haase, J. Phys. Chem. B, 104, 2824 (2000). https://doi.org/10.1021/jp993581r
  30. V. Buissette, D. Giaume, T. Gacoin and J. P. Boilot, J. Mater. Chem., 16, 529 (2006). https://doi.org/10.1039/b508656f
  31. K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski and M. A. Haase, Chem., Int. Ed., 40, 573 (2001). https://doi.org/10.1002/1521-3773(20010202)40:3<573::AID-ANIE573>3.0.CO;2-0
  32. S. Sivakumar, P. R. Diamente and F. Veggel, Chem. Eur. J., 12, 5878 (2006). https://doi.org/10.1002/chem.200600224
  33. J. C. Boyer, F. Vetrone, L. A. Cuccia and J. A. Capobianco, J. Am. Chem. Soc., 128, 7444 (2006). https://doi.org/10.1021/ja061848b
  34. H. S. Qian and Y. Zhang, Langmuir, 24, 12123 (2008). https://doi.org/10.1021/la802343f
  35. J. C. Boyer, L. A. Cuccia and J. A. Capobianco Nano lett., 7, 847 (2007). https://doi.org/10.1021/nl070235+
  36. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas and J. H. Hafner, Nano lett., 4, 2355 (2004). https://doi.org/10.1021/nl048610a
  37. C. Loo, A. Lowers, N. Halas, J. West and R. Drezek, Nano Lett., 5, 709 (2005). https://doi.org/10.1021/nl050127s
  38. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, 281, 2013 (1998). https://doi.org/10.1126/science.281.5385.2013
  39. S. J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth and F. M. Winnik, Langmuir, 23, 1974 (2007). https://doi.org/10.1021/la060093j
  40. M. Green and E. Howman, Chem. Commun., 121 (2005).
  41. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos, J. Phys. Chem. B, 105, 8861 (2001). https://doi.org/10.1021/jp0105488
  42. K. T. Yong, H. ding, I. Roy, W. C. Law, E. J. Bergey, A. Maitra and P. N. Prasad, ACS Nano, 3, 502 (2009). https://doi.org/10.1021/nn8008933
  43. S. Hussain, N. Won, J. Nam, J. Bang, H. Chung and S. Kim, ChemPhysChem, 10,1466 (2009). https://doi.org/10.1002/cphc.200900159