Larval Development of Oregonia gracilis (Crustacea: Decapoda: Majoidea: Oregoniidae) with a Key to the Known Oregoniid Zoeae from the Northern Pacific

Seong Mi Oh and Hyun Sook Ko*
Department of Biological Sciences, Silla University, Busan 617-736, Korea

Abstract

The larvae of Oregonia gracilis are described, illustrated and compared with those of other known species of the Oregoniidae. The first zoea of O. gracilis of the present study is somewhat different from that of Hart (1960) especially in having a basis and an endopod of the first maxilliped with $2,2,3,3$ and $3,2,1,2,5$ setations, respectively and an endopod of the second maxilliped with $1,1,5$ setation. It is found the Oregoniidae must be a homogeneous group based on the zoeal morphology. A provisional key for the identification of the known zoeae of the Oregoniidae from the northern Pacific is provided.

Keywords: Oregoniidae, Oregonia gracilis, larvae, morphology, key

INTRODUCTION

The graceful decorator crab, Oregonia gracilis Dana, 1851 is usually wearing a piece of algae, sponges, bryozoans, or hydroids which it attaches by hooked setae. Its habitat is intertidal to 436 m depth from Bering Sea to Japan (Jensen, 1995) and Korea (Kim, 1973). It belongs to the family Oregoniidae Garth, 1958, which contains 15 species of four genera world-wide (Ng et al., 2008).

Larval stages have been reported for eight species in this family (Table 1). The larvae of O. gracilis were first described by Hart (1960), however, his report was too brief and not adequate for the modern larval description.

Therefore, the aims of this paper are to describe the larval stages of O. gracilis, compare its morphology with previously described oregoniid zoeae, and provide a key for the identification of the known zoeae of the Oregoniidae from the northern Pacific.

MATERIALS AND METHODS

An ovigerous female of Oregonia gracilis was collected by trawl in the Burrow Bay ($\left.48^{\circ} 28^{\prime} \mathrm{N}, 122^{\circ} 40^{\prime} \mathrm{W}\right)$ on 2 Febuary 2004, Anacortes, WA, USA. The zoeae hatched on 17 March 2004. They were reared using methods described by $\mathrm{Ko}(1995)$ at a constant water temperature of $15^{\circ} \mathrm{C}$. Larvae were fixed and preserved in 10% neutral formalin. Dissected appendages were examined and drawed using a Leitz

[^0]Laborlux S Microscope with camera lucida. Setal counts on appendages and measurements were based on the mean of ten specimens for zoeal stage. The sequence of the larval description was based on the malacostracan somite plan and described from anterior to posterior (Clark et al., 1998). Setal armature on appandages was described from proximal to distal segments and in order of endopod to exopod. The long plumose natatory setae of the first and second maxillipeds were drawn truncated. A micrometer was used for measurements: CL (carapace length) was from the base of the rostral spine to the most posterior carapace margin, CW (carapace width) was across the widest part of the carapace, and SL (spine to spine length) was from tip of the rostral to tip of the dorsal spine. The classification follows that of Ng et al. (2008). The larvae and the spent females were deposited in Silla University, Korea (SUZCr103257).

RESULTS

The larval stage consists of two zoeal and one megalopal stages. The first zoeal stage is described and illustrated completely. For the second zoeal stage only the main differences from the first zoea are described.

First zoea (Fig. 1)

Size. CL $0.95 \pm 0.09 \mathrm{~mm}$. SL $3.72 \pm 0.11 \mathrm{~mm}$.
Carapace (Fig. 1A, E). Dorsal spine long, spinulate; rostral spine long, straight, spinulate; lateral spine spinulate; pair of posterodorsal setae present; each ventral margin with 1 plumose anterior and 4 posterior setae; eyes stalked.
Antennule (Fig. 1B). Uniramous; endopod not differenti-

Table 1. List of species, larval stages and sources of descriptions in the Oregoniidae (Z and $M=$ zoeal and megalopal stages).

Species	Larval stages	Authors
Chionoecetes bairdi Rathbun, 1893	ZI	Haynes, 1973
Chionoecetes japonicus Rathbun, 1932	M	Jewett and Haight, 1977
Chionoecetes opilio (Fabricius, 1788)	ZI, ZII, M	Motoh, 1976
	ZI	Aikawa, 1929
KI, ZII, M	Kurata, 1963 (as C. o. elongates)	
Kuwatani et al., 1971		
Chionoecetes tanneri Rathbun, 1893	ZI	Haynes, 1973
Hyas araneus (Linnaeus, 1758)	ZI	Motoh, 1973
Hyas coarctatus Leach, 1815	ZI, ZII, M	Hong et al., 2009
Hyas lyratus Dana, 1851	ZI, ZII, M	Christiansen, 1973
Oregonia gracilis Dana, 1851	ZI, ZII, M	Kurata, 1963 (as H. c. alutaceus)

ated; exopod with 2 long, stout aesthetascs, 2 shorter, thinner aesthetascs, and 1 short seta, all terminal.

Antenna (Fig. 1C). Endopod bud present; protopod spinulate, slightly shorter than rostral spine; exopod about 25% length to protopod, with 3 unequal sized setae.

Mandibles (Fig. 1D). Asymmetrical; right molar process with tooth and left molar process without tooth, confluent with incisor processes; endopod palp not differentiated.

Maxillule (Fig. 1F). Coxal endite with 7 setae; basial endite with 7 setae; endopod 2 -segmented, proximal segment with 1 seta, distal segment with 2 subterminal and 4 terminal setae.

Maxilla (Fig. 1G). Coxal endite bilobed, with $4+4$ setae; basial endite bilobed with $5+5$ setae; endopod with 6 (3 subterminal and 3 terminal) setae; scaphognathite margin with 9 plumose setae and 1 distal stout process.

First maxilliped (Fig. 1H). Coxa with 1 seta; basis with 10 setae arranged as 2, 2, 3, 3; endopod 5 -segmented, with 3 , $2,1,2,5$ (1 subterminal +4 terminal) setae, respectively; exopod 2 -segmented, proximal segment unarmed, distal segment with 4 terminal natatory setae.

Second maxilliped (Fig. 1I). Coxa unarmed; basis with 4 setae; endopod 3 -segmented, with 1, 1, 5 (3 subterminal +2 terminal) setae; exopod 2 -segmented, distal segment with 4 terminal natatory setae.

Third maxilliped (Fig. 1J). Biramous.
Pereopods (Fig. 1A, K). Present, cheliped bilobed.
Abdomen (Fig. 1A, L). Five somites; somite 1 with 2 dorsomedial seta; somites 2,3 with pair of lateral processes, which larger on somite 2 , somites 2-5 each with pair of posterodorsal setae; long posterolateral processes on somites 3-5, first and second ones longer than third; pleopod buds present as buds.

Telson (Fig. 1L, M). Each fork long, distally spinulate,
with 1 lateral spine, 1 dorsomedial spine; each posterior margin with 3 serrated setae.

Second zoea (Fig. 2)

Size. CL $1.37 \pm 0.07 \mathrm{~mm}$. SL $4.51 \pm 0.09 \mathrm{~mm}$.
Carapace (Fig. 2A, E). Each ventral margin with 1 plumose anterior and 9 posterior setae; eyes stalked.

Antennule (Fig. 2B). Endopod present; exopod with total of 7 long aesthetascs, 1 short seta, all terminal.

Antenna (Fig. 2C). Endopod bud about 30\% length of protopod.

Mandibles (Fig. 2D). Palps present.
Maxillule (Fig. 2F). Epipod with plumose seta; coxal endite with 8 setae; basial endite with 9 setae.

Maxilla (Fig. 2G). Coxal endite with $4+4$ setae; basial endite with $6+6$ setae; scaphognathite with 18 marginal plumose setae.

First maxilliped (Fig. 2H). Exopod bearing distal segment with 6 terminal natatory setae.

Second maxilliped (Fig. 2I). Exopod bearing distal segment with 6 terminal natatory setae.

Third maxilliped (Fig. 2J). More developed.
Pereopods (Fig. 2K). More developed, all segments differentiated.

Abdomen (Fig. 2L). Six somites; pleopod buds more developed, those on somites 2-5 biramous; pair of dorsomedial setae present on somites 2-5.
Telson (Fig. 2L, L'). Each posterior margin with 1 plumose seta and 3 serrated setae.

Megalopa (Fig. 3)
Size. CW $1.38 \pm 0.08 \mathrm{~mm}$. CL $1.98 \pm 0.06 \mathrm{~mm}$.
Carapace (Fig. 3A). Pear shape, with 1 long rostral spine, pair of spines anterior to eye stalks and another posterior,

Fig. 1. Oregonia gracilis, first zoeal stage. A, lateral view; B, antennule; C, antenna; D, mandibles; E, lateral expansion of carapace; F, maxillule; G, maxilla; H, first maxilliped; I, second maxilliped; J, third maxilliped; K, chela and pereopods; L, dorsal view of abdomen and telson; L', fork of telson. Scale bars $=0.5 \mathrm{~mm}(A, L), 0.1 \mathrm{~mm}(B-E, H, I, K)$ and $0.05 \mathrm{~mm}(F, G, J)$.

Fig. 2. Oregonia gracilis, second zoeal stage. A, lateral view; B, antennule; C, antenna; D, mandibles; E, lateral expansion of carapace; F, maxillule; G, maxilla; H, first maxilliped; I, second maxilliped; J, third maxilliped; K, chela and pereopods; L, dorsal view of abdomen and telson; L', fork of telson. Scale bars $=0.5 \mathrm{~mm}(A, K, L), 0.1 \mathrm{~mm}(B-D, F, G)$ and $0.25 \mathrm{~mm}(E, H-J)$.

Fig. 3. Oregonia gracilis, megalopal stage. A, dorsal view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla; G, first maxilliped; H, second maxilliped; I, third maxilliped; J, chela; $K-N$, pereopods 2-5; O, pleopod 2; P, pereopod 4; Q, pereopod 5 ; R, dorsal view of abdomen and telson. Scale bars $=0.5 \mathrm{~mm}(A, J-N, R), 0.1 \mathrm{~mm}(B, D-I)$ and $0.25 \mathrm{~mm}(C, O-Q)$.
pair of spines on hepatic and epibranchial regions, 1 long cardiac medial spine.

Antennule (Fig. 3B). Peduncle 3 -segmented, segment 1 with 1 seta, segment 2 with 2 setae, segment 3 with 1 seta; endopod with 2 subterminal and 2 terminal setae; exopod 4 segmented, segment 1 without seta, segment 2 with 6 aesthetascs and 1 short seta, segment 3 with 4 proximal aesthetascs and segment 4 with 1 subterminal aesthetasc.

Antenna (Fig. 3C). Eight-segmented, with 1, 2, 3, 0, 0, 4, 0, 4 setae.

Mandible (Fig. 3D). Palp 2-segmented, distal segment with 8 marginal setae.

Maxillule (Fig. 3E). Coxal endite with 11 setae; basial endites with 20 setae; endopod with 2 terminal setae.

Maxilla (Fig. 3F). Coxal and basial endites each with 12 and 15 setae, respectively; endopod with 2 terminal setae; scaphognathite with 44 marginal plumose setae and 4 surface setae.

First maxilliped (Fig. 3G). Epipod with 11 long simple setae; coxal and basial endites each with 8 and 15 setae, respectively; endopod with 2 setae; exopod 2 -segmented, proximal segment with 1 medial simple and 1 distal plumose setae, distal segment with 4 long terminal plumose setae.

Second maxilliped (Fig. 3H). Epipod with 2 terminal simple setae; coxa and basis not differentiated; endopod 4 -segmented, with $1,2,4,8$ setae; exopod 2 -segmented, proximal segment with 1 medial seta, distal segment with 4 long terminal plumose setae.

Third maxilliped (Fig. 3I). Epipod with 23 long simple and 8 proximal setae; coxa and basis not differentiated; endopod 5 -segmented, with $15,10,5,9,7$ setae; exopod 2 segmented, proximal segment with 1 medial seta, distal segment with 4 long terminal plumose and 2 short terminal setae.

Chela (Fig. 3J). All segments with a few small setae; tip slightly hooked.

Pereopods 2-5 (Fig. 3K-N). All segments well differentiated, sparsely armed with setae; dactylus with corneous scales on distal outer surface, tip sharp pointed.

Pleopods (Fig. 3O-Q). Endopod with 3 hooks except in pleopod 5; pleopods 1-5 each with $14,14,14,9,4$ plumose setae on distal segment, respectively.

Abdomen and telson (Fig. 3R). Abdomen 6-segmented, with a few of small setae on surface; telson broad, rounded, with 2 dorsomedial setae.

DISCUSSION

The first zoea of Oregonia gracilis in the present study

Table 2. Differences between the larval description of Oregonia gracilis by Hart (1960) and the present study.

Characters	Hart (1960)	Present study
ZOEA I		
Carapace		
lateral margin	4-6 setae	5 setae
Antennule	2 aesthetascs+ 1 seta	4 aesthetascs+ 1 seta
Maxilliped 1 basis	9 setae	2, 2, 3, 3 (10) setae
endopod	$\begin{aligned} & 3,1,1,2,5 \\ & \text { setation } \end{aligned}$	$\begin{aligned} & 3,2,1,2,5 \\ & \text { setation } \end{aligned}$
Maxilliped 2 endopod Maxilliped 3	1, 1, 4 setation no description	1, 1, 5 setation biramous bud
Abdominal somite 5 lateral posterior spine	long	small
ZOEA II		
Antennal protopod	0.7 rostral spine length	0.5 rostral spine length
Antennule	5-7 aesthetascs	7 aesthetascs+1 seta
Maxillule endopod basial endite coxal endite	no description no description no description	1, $2+4$ setae 9 setae 8 setae
Maxilla endopod basial endite coxal endite	no description no description no description	$3+3$ setae $6+6$ setae $4+4$ setae
Maxilliped 1 coxa	no description	1 seta
MEGALOPA		
Antennule	no description	11 aesthetascs +1 seta
Antenna	no description	$1,2,3,0,0,4,0,4$ setation
Mandible palp	no description	8 setae
Maxillule endopod basial endite coxal endite	no description no description no description	2 setae 20 setae 11 setae
Maxilla endopod basial endite coxal endite scaphognathite	no description no description no description no description	2 setae 15 setae 12 setae 48 setae
Maxillipeds 1-3 exopods	no description	4, 4, 6 setae
Pleopods 1-5 exopods	$14,14,12,10,4$ setae	$14,14,14,9,4$ setae

shows some differences from that described by Hart (1960) in setations of the maxillipeds (Table 2). The basis and endopod of the first maxilliped have $2,2,3,3(10)$ and 3,2 , $1,2,5$ setations in the present zoea, whereas they are 9
Table 3. Comparison of the first zoeal characteristics of seven known species in the Oregoniidae (ZI and ZII=first and second zoeae).

Species Authors	Chionoecetes bairdi Haynes, 1973	Chionoecetes japonicus Motoh, 1976	Chionoecetes opilio Motoh, 1973	Chionoecetes tanneri Hong et al., 2009	Hyas araneus Christiansen, 1973	Hyas coarctatus Christiansen, 1973	Oregonia gracilis Present study
SL (mm)	ZI 4.2	ZI 5.2	ZI 4.8-5.4 (ZII 6.2)	ZI 5.5	ZII 4.8	ZII 3.9	ZI 3.7 (ZII 4.4-4.6)
Carapace rostral spine dorsal spine lateral spine	long, spinulate long, spinulate long, spinulate	long, spinulate long, spinulate short, spinulate	long, spinulate long, spinulate short, spinulate	long, spinulate long, spinulate long, spinulate			
Antennal exopod (exopod/protopod \%)	$\begin{gathered} 2 \text { setae }+1 \text { spine } \\ (27 \%) \end{gathered}$	$\begin{aligned} & 3 \text { setae } \\ & (25 \%) \end{aligned}$	3 setae (25\%)	$\begin{gathered} 2 \text { setae+1 spine } \\ (23 \%) \end{gathered}$	$\begin{gathered} 2 \text { setae+1 spine } \\ (25 \%) \end{gathered}$	$\begin{gathered} 2 \text { setae+1 spine } \\ (23 \%) \end{gathered}$	$\begin{aligned} & 3 \text { setae } \\ & (25 \%) \end{aligned}$
Maxillule endopod basial endite coxal endite	1, $2+4$ setae 7 setae 7 setae	$\begin{gathered} 1,2+4 \text { setae } \\ 7 \text { setae } \\ 7 \text { setae } \end{gathered}$	$\begin{gathered} 1,2+4 \text { setae } \\ 7 \text { setae } \\ 7 \text { setae } \end{gathered}$	$\begin{gathered} 1,2+4 \text { setae } \\ 7 \text { setae } \\ 8 \text { setae } \end{gathered}$	$\begin{gathered} 1,2+4 \text { setae } \\ 7 \text { setae } \\ 7 \text { setae } \end{gathered}$	$\begin{gathered} 1,2+4 \text { setae } \\ 7 \text { setae } \\ 7 \text { setae } \end{gathered}$	$\begin{gathered} 1,2+4 \text { setae } \\ 7 \text { setae } \\ 7 \text { setae } \end{gathered}$
Maxilla endopod basial endite coxal endite scaphognathite	$\begin{gathered} 3+3 \text { setae } \\ 5+5 \text { setae } \\ 4+4 \text { setae } \\ 11 \text { setae } \end{gathered}$	$\begin{gathered} 3+3 \text { setae } \\ 5+5 \text { setae } \\ 4+4 \text { setae } \\ 12-13 \text { setae } \end{gathered}$	$\begin{gathered} 3+3 \text { setae } \\ 5+5 \text { setae } \\ 4+4 \text { setae } \\ 12-13 \text { setae } \end{gathered}$	$\begin{gathered} 3+3 \text { setae } \\ 5+5 \text { setae } \\ 4+4 \text { setae } \\ 12 \text { setae } \end{gathered}$	3+3 setae 5+5 setae $4+4$ setae 7-9 setae	$\begin{aligned} & 3+3 \text { setae } \\ & 5+5 \text { setae } \\ & 4+4 \text { setae } \\ & 8-10 \text { setae } \end{aligned}$	$\begin{gathered} 3+3 \text { setae } \\ 5+5 \text { setae } \\ 4+4 \text { setae } \\ 10 \text { setae } \end{gathered}$
Maxilliped I basis endopod	$\begin{gathered} 10 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$	$\begin{gathered} 10 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$	$\begin{gathered} 10 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$	$\begin{gathered} 9 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$	$\begin{gathered} 10 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$	$\begin{gathered} 10 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$	$\begin{gathered} 10 \text { setae } \\ 3,2,1,2,5 \\ \text { setation } \end{gathered}$
Maxilliped II basis endopod	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$	$\begin{gathered} 4 \text { setae } \\ 1,1,5 \text { setation } \end{gathered}$
Abdomen somite 1	2 dorsal setae	no data	no data	2 dorsal setae	2 dorsal setae	2 dorsal setae	2 dorsal setae
lateral processes on somites 2, 3 posterolateral process on somite 4	larger on somite 2 $>$ length of somite 5	```larger on somite 3(ZI) same size (ZII) `length of somite 5```	same size (ZI) larger on somite 3 (ZII) $>$ length of somite 5	larger on somite 2 $>$ length of somite 5	larger on somite 2 $\doteqdot 1 / 2$ length of somite 5	larger on somite 2 $\fallingdotseq 1 / 2$ length of somite 5	larger on somite 2 \geq length of somite 5
Telson fork	2 outer spines+ 1 spinule	2 outer spines	2 outer spines 2 outer spines+1 spinule (Kurata, 1963)	2 outer spines	2 outer spines	2 outer spines	2 outer spines

setae and $3,1,1,2,5$ setation in Hart's, respectively. Also, an endopod of the second maxilliped is $1,1,5$ setation in the present zoea, whereas it is 1, 1, 4 setation in Hart's. As shown in Table 3, our setations agree well with those of six known zoeae of the Oregoniidae, it is considered that some setae of the maxillipeds of the first zoea are overlooked by him. Also, it is revealed that Hart's description for the second zoea and the megalopa are too brief to compare with our study.

The larval description of Hyas lyratus by Hart (1960) is not informative enough for use within the scope of this study, so, the first zoeal characteristics of seven known species except Hyas lyratus in the Oregoniidae are compared (Table 3). The first zoeae of the Oregoniidae are very similar to each other in having the following characteristics: 1) carapace spines are long and spinulate, 2) exopod of antenna is approximately 25% length to protopod, with 3 or 2 setae and a spine terminally, 3) endopod of maxillule is with $1,2+4$ setae, 4) endopod of maxilla is with $3+3$ setae, 5) basis and endopod of first maxilliped are each with 10 setae and 3, 2, 1, 2, 5 setation, respectively (except in Chionoecetes tanneri), 6) basis and endopod of second maxilliped are each with 4 setae and $1,1,5$ setation, respectively, 7) lateral processes are on abdominal somites 2 and 3, 8) posterolateral process on somite 4 is more than half length to somite 5 , and 9) telson fork is with 2 outer spines. Therefore, the Oregoniidae are found to be a homogeneous group on the respect of zoeal morphology.

It seems to be difficult to distinguish zoeae of O. gracilis from those of other known oregoniid species because of their overall similarlities of zoeal morphology. Hence, the following provisional key is provided to aid in the identification of seven known species of zoeae of the Oregoniidae from the northern Pacific. The characteristics employed are usually consistent during the zoeal development.
A key to the seven known species of zoeae of theOregoniidae from the northern Pacific

1. Basis of first maxilliped with 10 setae2

- Basis of first maxilliped with 9 setae
Chionoecetes tanneri

2. Size of lateral process on abdominal somite $2 \leq$ that of abdominal somite 3 .. 3

- Size of lateral process on abdominal somite $2>$ that of abdominal somite 3
.4

3. Red chromatophores on abdomen when alive
Chionoecetes japonicus

- Red chromatophores absent on abdomen when alive

> ..Chionoecetes opilio
4. Telson fork with 2 outer spines …................................ 5

- Telson fork with 2 outer spines and 1 spinule

Chionoecetes bairdi
5. Posterolateral process on somite 4 longer than $1 / 2$ length of somite 5 .6

- Posterolateral process on somite 4 longer than length of somite 5 .. Oregonia gracilis

6. SL of second zoea over than $4.5 \mathrm{~mm} \cdots \cdots \cdots$ Hyas araneus

- SL of second zoea less than $4.0 \mathrm{~mm} \cdots \cdots$ Hyas coarctatus

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Stephen Sulkin (Shannon Point Marine Center, U. S. A.) for inviting the second author as a visiting researcher in 2003 and wish to thank Mrs Se Jin Ok for preparing figures. This work was supported by the Korean Research Foundation Grant funded by the Korean Government (KRF-2008-531-C00062).

REFERENCES

Aikawa, H., 1929. On larval forms of some Brachyura. Rec. Oceanogr. Wks. Japan, 2: 17-55.
Christiansen, M.E., 1973. The complete larval development of Hyas araneus (Linnaeus) and Hyas coarctatus Leach (Decapoda, Brachyura, Majidae) reared in the laboratory. Cotrib. No. 100, Zool. Mus. University of Oslo, 100: 63-89.
Clark, P.F., D.K. Calazans and G.W. Pohle, 1998. Accuracy and standardization of brachyuran larval descriptions. Invert. Reprod. Develop., 33: 127-144.
Haynes, E., 1973. Descriptions of prezoeae and stage I zoeae of Chionoecetes bairdi and C. opilio (Oxyrhyncha, Oregoniinae). Fish. Bull., 71: 769-775.
Hart, J.F.L., 1960. The larval development of British Columbia Brachyura. II. Majidae, subfamily Oregoniinae. Can. J. Zool., 38: 539-546.
Hong, S.Y., W. Park, R.I. Perrry and J.A. Boutillier, 2009. Larval development of Chionoecetes tanneri Rathbun, 1893 (Decapoda: Brachyura: Majidae) described from the labo-ratory-reared specimens. Anim. Cell. Syst., 13: 59-69.
Jensen, G.C., 1995. Pacific coast crabs and shrimps. Sea Challengers Publication, pp. 1-87, figs. 1-163.
Jewett, S.C. and R.E. Haight, 1977. Description of megalopa of snow crab, Chionoecetes bairdi (Majidae, subfamily Oregoniinae). Fishery Bull. Natn. Ocean Atmos. Adm., 75: 459-463.
Kim, H.S., 1973. Anomura, Brachyura. Illustrated Encyclopedia of Fauna and Flora of Korea. The Ministry of Education, Korea, pp. 1-506.
Ko, H.S., 1995. Larval development of Benthopanope indica (De Man, 1887) (Decapoda: Brachyura: Pilumnidae) in the laboratory. J. Crust. Biol., 15: 280-290.
Kurata, H., 1963. Larvae of Decapoda Crustacea of Hokkaido.
2. Majidae (Pisinae). Bull. Hokkaido Reg. Fish. Res. Lab., 27: 25-31.
Kuwatani, Y., T. Wakui and T. Nakanishi, 1971. Studies on the larvae and the post-larvae of a tanner crab Chionoecetes opilio elongatus Rathbun I. On the protozoeal larvae. Bull. Hokkaido Reg. Fish. Res. Lab., 37: 32-40.
Motoh, H., 1973. Laboratory-reared zoeae and megalopae of zuwai crab from the Sea of Japan. Bull. Jap. Soc. Sci. Fish., 39: 1223-1230.

Motoh, H., 1976. The larval stages of benizuwai-gani, Chioneocetes japonicus Rathbun reared in the laboratory. Bull. Jap. Soc. Sci. Fish., 42: 533-542.
Ng, P.K.L., D.L. Guinot and P.J.F. Davie, 2008. Systema Brachyurorum: Part 1. An annotated checklist of extant brachyuran crabs of the world. Raffles Bull. Zool., 17: 1-286.

Received January 19, 2010
Accepted March 11, 2010

[^0]: *To whom correspondence should be addressed
 Tel: 82-51-999-5473, Fax: 82-51-999-5176
 E-mail: hsko@silla.ac.kr

