형방도적산(荊防導赤散)이 급성코카인 투여로 인해 유도된 흰쥐의 행동량과 c-Fos 발현에 미치는 영향

Effect of Hyeongbangdojeok-san on Acute Cocaine-induced Behavioral Effect and Immediate Early Gene Expression in Rats.

  • 서지용 (대구한의대학교 한의학과 사상체질과) ;
  • 최애련 (대구한의대학교 한의학과 사상체질과) ;
  • 구덕모 (대구한의대학교 한의학과 사상체질과)
  • Seo, Ji-Yong (Dept. of Sasang Constitutional Medicine, college of Oriental Medicine, Deagu Haany Univ.) ;
  • Choi, Ae-Ryun (Dept. of Sasang Constitutional Medicine, college of Oriental Medicine, Deagu Haany Univ.) ;
  • Koo, Deok-Mo (Dept. of Sasang Constitutional Medicine, college of Oriental Medicine, Deagu Haany Univ.)
  • 투고 : 2010.08.13
  • 심사 : 2010.08.27
  • 발행 : 2010.12.31

초록

1. Objectives The present study was designed to investigate the effect of Soyangin Hyeongbangdojeok-san(HBDJS) on acute cocaine-induced behavior effect and gene expression in the rat brain. 2. Methods Experimental animals were composed of saline(SAL), cocaine(COC), HBDJS + COC, HBDJS + SAL group. Rats received HBDJS(100, 200 mg/kg, p.o.) 1 h prior to cocaine hydrochloride(20 mg/kg, i.p.) treatment respectively. After cocaine injection, locomotor activity and rearing were measured in a rectangular container equipped with a video camera above the center of the floor for 60 min. In addiction, c-Fos expression in the rat brain was detected using immunohistochemistry 2 h after cocaine injection. And the effect of HBDJS on acute cocaine-induced pERK, pElk, pCREB upstream of c-Fos expression was detected using western blotting and immunohistochemistry 15 min after cocaine challenge. 3. Results The present results show that HBDJS at dose of 200 mg/kg attenuated cocaine-induced both locomotor activity and rearing. Also HBDJS at dose of 200 mg/kg significantly decreased c-Fos expression in the rat brain(nucleus accumebns and striatum). However HBDJS at dose of 200 mg/kg have no effect on cocaine-induced pERK, pCREB, pElK-1 expression. HBDJS is c-Fos expression through ERK-independent pathway. 4. Conclusions. These results suggest that HBDJS may be effective in suppressing the reinforcing effects of cocaine.

키워드

참고문헌

  1. Koob G.F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13:177-184. https://doi.org/10.1016/0165-6147(92)90060-J
  2. Di Chiara. G & A Imperato. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad Sci USA. 1988;85:5274-5278. https://doi.org/10.1073/pnas.85.14.5274
  3. Jang EY, Choe ES, Hwang M, Kim SC, Lee JR, Kim SG, et al. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor. Eur J Pharmacol. 2008;587(1-3):124-128. https://doi.org/10.1016/j.ejphar.2008.03.054
  4. Steketee JD, Kalivas PW. Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region. J Pharmacol Exp Ther. 1991;259(2):916-924.
  5. Nathalie thiriet, Dominique Aunis and Jean zwiller. c-fos and egr-1 immediate-early gene induction by cocaine and cocaethylene in rat brain: a comparative study. Ann NY Acad Sci. 2000;914:46-57. https://doi.org/10.1111/j.1749-6632.2000.tb05182.x
  6. Konradi C, Cole RL, Heckers S, Hyman SE. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci. 1994;14:5623-5634.
  7. Vanhoutte P, Barnier JV, Guibert B, Pages C, Besson MJ, Hipskine RA. et al. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-Fos activation, via an extracellular signal-regulated kinase dependent pathway in brain slices. Moi Cell Biol. 1999;19:236-246.
  8. Adams DH, Hanson GR, Keefe KA. Psychostimulats activate p42/p44 MAPK in dorsal and ventral striatum. Soc Neurosci Abstr. 2001;27:445.
  9. Sun WL, Zhou L, Hazim R, Quinones-Jenab V, Jenab S. Effect of acute cocaine on ERK and DARPP-32 phosphorylation pathways in the caudate-putamen of Fisher rats. Brain Research. 2007;1178:12-19. https://doi.org/10.1016/j.brainres.2007.07.051
  10. Lee Je-Ma. Donguisusebowon. Seoul:ShinilMunhwasa. 1963:63.(Korean)
  11. 최병일. 소양인 형방도적산의 효능에 관한 실험적 연구. 사상체질의학회지. 1990;2(1):167-176.
  12. Lee SY. Choi AR, Ha JH, Lee JH, Kim PJ, Goo DM. An Experimental Study on the Anti-stress Effect by Soyangin Hyeongbangdojeok-san and Yanggyeoksanhwatang. J of Sasang Constitut Med. 2008;20(3): 151-163. (Korean)
  13. 김대근, 신태용, 염정열, 은재순. 마약과 약물 남용. 서울:북스힐. 1999:488.
  14. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington DC:American Psychiatric press. 1994:1-1156.
  15. Weiss F, Hurd YL, Ungerstedt U, Markou A, Plotsky PM, Koob GF. Neurochemical correlates of cocaine and ethanol self-administration. Ann NY Acad Sci. 1992;654:220-41. https://doi.org/10.1111/j.1749-6632.1992.tb25970.x
  16. Zapata A, Chefer VI, Ator R, Shippenberg TS, Rocha BA. Behavioural sensitization and enhanced dopamine response in the nucleus accumbens after intravenous cocaine self-administration in mice. Eur J Neurosci. 2003;17(3):590-596. https://doi.org/10.1046/j.1460-9568.2003.02491.x
  17. Antoniou K, Kafetzopoulos E, Papadopoulou-Daifoti Z, Hyphantis T, Marselos M. D-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats. Neurosci Biobehav Rev. 1998;23(2):189-196. https://doi.org/10.1016/S0149-7634(98)00020-7
  18. Roberts DCS, Corcoran ME, Fibiger HC. On the role of ascending catechoaminergic systems in the intravenous self-administration of cocaine. Pharmacol Biochem Behav. 1997;6(6):615-620.
  19. Kelly PH, Seviour PW, Iverson SD. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens and striatum. Brain Res. 1975;95(3):507-522.
  20. Morgan JI, Curran T. Immediate-early genes: ten years on. Trends Neurosci. 1995;18(2):66-67. https://doi.org/10.1016/0166-2236(95)93874-W
  21. Nestler EJ, Barrot M, Self DW. Delta Fos B: a sustained molecular switch for addiction. Proc Natl Acad Sci USA. 2001;98(20):11042-11046. https://doi.org/10.1073/pnas.191352698
  22. 전국 한의과대학 사상의학교실. 사상의학. 서울:집문당. 2004:647, 649, 682-684, 692-693, 701-702.
  23. 조황성. 사상의학의 원리와 방제. 서울:집문당. 2005:313-6, 340-352, 349-351, 427-438.
  24. 박인상. 동의사상요결. 서울:소나무. 1992:157, 247-248, 270.
  25. Pontieri FE, Tanda G, Dichiarn G. Intravenous cocaine, morphine and amphetamine preferentially increase extracellular doparnine in the "shell" as cornpared with th "Core" or the rat nucleus accurnbens. Ptarnoc Natl Acad sd USA. 1995;92(26):12304-12308. https://doi.org/10.1073/pnas.92.26.12304
  26. Seiden LS, Sabol KE, Ricaurte GA. Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol. 1993;32:639-677.
  27. Kuczenski R, Segal DS, Aizenstein ML. Amphetamine, cocaine and fencarnfa-mine: relationship between locornotor and stereotypy response profiles end caudate and accurnbens doparnine dynamics. J Neurosci. 1991;11(9):2703-2711,
  28. Ushijima I, Carino MA, Horita A. Involvement of D1 and D2 dopamine systems in the behavioral effects of cocaine in rats. Pharmacol Biochem Behav. 1995;52(4):737-741. https://doi.org/10.1016/0091-3057(95)00167-U
  29. Parada A, Soares-da-silva P. The doparnine antagonist SCH23390 reverses dizocilpine-induced blockade of cocaine sensitization. Neuropharrnacology. 2000;39(9):1645-1652. https://doi.org/10.1016/S0028-3908(99)00238-5
  30. Robertson HA, Paul ML, Moratalla R, Cray Biel AM. Expression of the immediate early gene c-Fos in basal ganglia: Induction by dopaminergic drugs. Can J Neurol. Sci. 1991;19:380-383.
  31. Freguson SA, Rowe SA, Krupa M, Kennaway DJ. Prenatal exposure of the doparnine agonist SKF-38393 disrupts the timing of the initia1 response of the suprnchiasrnatic nucleus to light. Brain Res. 2000;858(2):284-289. https://doi.org/10.1016/S0006-8993(99)02392-6
  32. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004;14(3):311-317. https://doi.org/10.1016/j.conb.2004.04.001
  33. Corbille AG, Valjent E, Marsicano G, Ledent C, Lutz B, Herve D, et al. Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. The Journal of Neuroscience. 2007;27(26):6937-6947. https://doi.org/10.1523/JNEUROSCI.3936-06.2007
  34. Yoon HS, Kim SW, Park HK, Kim JH. Microinjection of CART peptide 55-102 into the nucleus accumbens blocks both the expression of behavioral sensitization and ERK phosphorylation by cocaine. Neuropharmacology. 2007;53:344-351. https://doi.org/10.1016/j.neuropharm.2007.05.014
  35. Wei-Lun Sun, Luyi Zhou, Ruhal Hazim, Vanya Quinones-Jenab and Shirzad Jenab. Effects of acute cocaine on ERK and DARPP-32 phosphorylation pathways in the caudate-putamen of Fischer rats. Brain Research. 2007;1178:12-19. https://doi.org/10.1016/j.brainres.2007.07.051
  36. Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci. 1998;18(5):1848-1859.
  37. Valjent E. Corvol JC. Pages C. Besson MJ. Maldonado R. Caboche J. Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. The Journal of Neuroscience. 2000;20(23):8701-8709.