Induction of the Proteasome Subunits by Xanthohumol Compounds from Hops

Hop 유래 Xanthohumol 화합물에 의한 Proteasome계의 유도발현

  • 이향림 (영남대학교 약학대학) ;
  • 이용록 (영남대학교 디스플레이 화학공학부) ;
  • 곽미경 (영남대학교 약학대학)
  • Received : 2010.08.23
  • Accepted : 2010.11.10
  • Published : 2010.12.31

Abstract

The proteasome plays a major role in the degradation of abnormal proteins within the cell. Therefore, repressed proteasome function is accepted as one of factors contributing the pathogenesis of multiple degenerative diseases. In the present study, we have observed that xanthohumol C, which is one of prenylated flavonoids from hops, increases the expression of the proteasome subunits through the Nrf2 pathway. Treatment of murine renal epithelial TCMK-1 cells with xanthohumol C and its methoxymethoxy-derivative elevated the expression of the Antioxidant Response Element (ARE)-driven reporter gene, as well as Nrf2-target genes including NAD(P)H: quinoneoxidoreductaes 1 (Nqo1). Transcript levels for the catalytic subunits of the proteasome Psmb5 and Psmb6 were increased by these compounds. The activation of the psmb5 promoter by xanthohumol C was abolished when the ARE in this promoter was mutated, indicating that proteasome induction was mediated by the Nrf2-ARE pathway. These results suggest that xanthohumol compounds from hops have a potential benefit on various oxidative stress-associated human diseases through the induction of the proteasome.

Keywords

References

  1. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. : An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313 (1997). https://doi.org/10.1006/bbrc.1997.6943
  2. Kwak, M. K., Wakabayashi, N., Itoh, K., Motohashi, H., Yamamoto, M. and Kensler, T. W. : Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J. Biol. Chem. 278, 8135 (2003). https://doi.org/10.1074/jbc.M211898200
  3. Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M. and Biswal, S. : Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer. Res. 62, 5196 (2002).
  4. Kensler, T. W., Wakabayashi, N. and Biswal, S. : Cell Survival Responses to Environmental Stresses Via the Keap1-Nrf2-ARE Pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89 (2007). https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
  5. Kwak, M. K., Wakabayashi, N. and Kensler, T. W. : Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat. Res. 555, 133 (2004). https://doi.org/10.1016/j.mrfmmm.2004.06.041
  6. Glickman, M. H. and Ciechanover, A. : The ubiquitinproteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373 (2002). https://doi.org/10.1152/physrev.00027.2001
  7. Voges, D., Zwickl, P. and Baumeister, W. : The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015 (1999). https://doi.org/10.1146/annurev.biochem.68.1.1015
  8. Shastry, B. S. : Neurodegenerative disorders of protein aggregation. Neurochem. Int. 43, 1 (2003). https://doi.org/10.1016/S0197-0186(02)00196-1
  9. Stefani, M. and Dobson, C. M. : Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 27, 27 (2003).
  10. Halliwell, B. : Hypothesis: proteasomal dysfunction: a primary event in neurogeneration that leads to nitrative and oxidative stress and subsequent cell death. Ann. N Y Acad. Sci. 962, 182 (2002). https://doi.org/10.1111/j.1749-6632.2002.tb04067.x
  11. Hyun, D. H., Lee, M., Halliwell, B. and Jenner, P. : Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J. Neurochem. 86, 363 (2003).
  12. Keller, J. N., Dimayuga, E., Chen, Q., Thorpe, J., Gee, J. and Ding, Q. : Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int. J. Biochem. Cell. Biol. 36, 2376 (2004). https://doi.org/10.1016/j.biocel.2004.05.003
  13. Poppek, D. and Grune, T. : Proteasomal defense of oxidative protein modifications. Antioxid. Redox. Signal. 8, 173 (2006). https://doi.org/10.1089/ars.2006.8.173
  14. Gerhauser, C. A. A., Heiss, E., Gamal-Eldeen, A., Klimo, K., Knauft, J., Neumann, I., Scherf, H. R., Frank, N., Bartsch, H. and Becker, H. : Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer. Ther. 1, 959 (2002).
  15. Piersen, C. : Phytoestrogens in botanical dietary supplements: implications for cancer. Integr. Cancer. Ther. 2, 120 (2003). https://doi.org/10.1177/1534735403002002004
  16. Dietz, BM, K. Y., Liu, G., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, G. F., Farnsworth, N. R., Mesecar, A. D., van Breemen, R. B. and Bolton, J. L. : Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18, 1296 (2005). https://doi.org/10.1021/tx050058x
  17. Lee, Y. R., Li, X., Lee, S. W., Yong, C. S., Hong, M. R. and Lyoo, W. S. : ChemInform abstract: Concise total synthesis of biologically interesting prenylated chalcone natural products:4-O-methylxanthohumol (VIII), xanthohumol E (XII), and sericone (XIII). Bull. Korean Chem. Soc. 29, 1205 (2008). https://doi.org/10.5012/bkcs.2008.29.6.1205
  18. Lee, Y. R. and Xia, L. : ChemInform abstract: Concise total synthesis of biologically interesting pyranochalcone natural products: citrunobin (Ia), boesenbergin A (Ib), boesenbergin B (IIa), xanthohumol C (IIb), and glabrachromene (IIc). Synthesis 3240 (2007).
  19. Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M. and Kensler, T. W. : Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 23, 8786 (2003). https://doi.org/10.1128/MCB.23.23.8786-8794.2003
  20. Dinkova-Kostova, A. T., Massiah, M. A., Bozak, R. E., Hicks, R. J. and Talalay, P. : Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA 98, 3404 (2001). https://doi.org/10.1073/pnas.051632198
  21. Dinkova-Kostova, A. T. and Talalay, P. : Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic. Biol. Med. 29, 231 (2000). https://doi.org/10.1016/S0891-5849(00)00300-2
  22. Nioi, P. and Hayes, J. D. : Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat. Res. 555, 149 (2004). https://doi.org/10.1016/j.mrfmmm.2004.05.023
  23. Prochaska, H. J. and Talalay, P. : Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer. Res. 48, 4776 (1988).
  24. Davies, K. J. : Degradation of oxidized proteins by the 20S proteasome. Biochimie. 83, 301 (2001). https://doi.org/10.1016/S0300-9084(01)01250-0
  25. Gomes-Marcondes, M. C. and Tisdale, M. J. : Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer. Lett. 180, 69 (2002). https://doi.org/10.1016/S0304-3835(02)00006-X
  26. Merker, K., Sitte, N. and Grune, T. : Hydrogen peroxidemediated protein oxidation in young and old human MRC-5 fibroblasts. Arch. Biochem. Biophys. 375, 50 (2000). https://doi.org/10.1006/abbi.1999.1657
  27. Kwak, M. K., Cho, J. M., Huang, B., Shin, S. and Kensler, T. W. : Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxidemediated cytotoxicity in murine neuroblastoma cells. Free Radic. Biol. Med. 43, 809 (2007). https://doi.org/10.1016/j.freeradbiomed.2007.05.029
  28. Kwak, M. K. and Kensler, T. W. : Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway. Biochem. Biophys. Res. Commun. 345, 1350 (2006). https://doi.org/10.1016/j.bbrc.2006.05.043