Metaproteomics in Microbial Ecology

메타프로테오믹스의 미생물생태학적 응용

  • 김종식 (경북해양바이오산업연구원) ;
  • 우정희 (경북해양바이오산업연구원) ;
  • 김준태 (경북해양바이오산업연구원) ;
  • 박년호 (경북해양바이오산업연구원) ;
  • 김충곤 (경북해양바이오산업연구원)
  • Received : 2010.03.02
  • Accepted : 2010.03.19
  • Published : 2010.03.31

Abstract

New technologies are providing unprecedented knowledge into microbial community structure and functions. Even though nucleic acid based approaches provide a lot of information, metaproteomics could provide a high-resolution representation of genotypic and phenotypic traits of distinct microbial communities. Analyzing the metagenome from different microbial ecosystems, metaproteomics has been applied to seawater, human guts, activated sludge, acid mine drainage biofilm, and soil. Although these studies employed different approaches, they elucidated that metaproteomics could provide a link among microbial community structure, function, physiology, interaction, ecology, and evolution. These approaches are reviewed here to help gain insights into the function of microbial community in ecosystems.

미생물 군집과 기능연구를 위한 최근의 새로운 분석기술의 발전은 다양한 유전 관련 정보를 제공해왔다. mRNA를 포함하는 핵산을 기초로 한 연구를 뛰어넘어서 메타프로테오믹스는 미생물 군집의 유전형 및 표현형의 특징적인 정보를 보다 정교하게 제공할 수 있다. 이미 서로 다른 미생물 생태계인 해수, 인간의 배설물, 활성 슬러지, 산성 광산 폐수 생물막, 토양 등에 메타프로테오믹스 기술이 유용하게 사용되었다. 이들 연구는 여러 측면에서 상당히 다르지만 미생물 군집의 구조, 기능, 생리, 상호관계, 생태, 진화적 측면을 결정적으로 상호 연결한다는 것을 밝혀냈다. 본 총설은 메타프로테오믹스에 대한 현재까지의 가장 최신의 정보를 요약하여 제공함으로써 메타프로테오믹스에 대한 정확한 이해와 활용을 통해 다방면의 메타프로테오믹스가 가능하도록 하고자 하였다.

Keywords

References

  1. Abram, F., E. Gunnigle, and V. O'Flaherty. 2009. Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis 30, 4149-4151. https://doi.org/10.1002/elps.200900474
  2. Apajalahti, J.H.A., A. Kettunen, M.R. Bedford, and W.E. Holben. 2001. Percent G+C profiling accurately reveals dietrelated differences in the gastrointestinal microbial community of broiler chickens. Appl. Environ. Microbiol. 67, 5656-5667. https://doi.org/10.1128/AEM.67.12.5656-5667.2001
  3. Benndorf, D., G.U. Balcke, H. Harms, and M. von Bergen. 2007. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 1, 224-234. https://doi.org/10.1038/ismej.2007.39
  4. Benndorf, D., C. Vogt, N. Jehmlich, Y. Schmidt, H. Thomas, G. Woffendin, A. Shevchenko, H.H. Richnow, and M. von Bergen. 2009. Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation 20, 737-750. https://doi.org/10.1007/s10532-009-9261-3
  5. Cardenas, E. and J.M. Tiedje. 2008. New tools for discovering and characterizing microbial diversity. Curr. Opin. Biotechnol. 19, 544-549. https://doi.org/10.1016/j.copbio.2008.10.010
  6. Chen, S., M.C. Rillig, and W. Wang. 2009. Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection. Proteomics 9, 4970-4973. https://doi.org/10.1002/pmic.200900251
  7. Desai, C., H. Pathak, and D. Madamwar. 2010. Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour. Technol. 101, 1558-1569. https://doi.org/10.1016/j.biortech.2009.10.080
  8. Farinati, S., G. DalCorso, E. Bona, M. Corbella, S. Lampis, D. Cecconi, R. Polati, and et al. 2009. Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9, 4837-4850. https://doi.org/10.1002/pmic.200900036
  9. Giovannoni, S.J., L. Bibbs, J.C. Cho, M.D. Stapels, R. Desiderio, K.L. Vergin, M.S. Rappe, and et al. 2005. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82-85. https://doi.org/10.1038/nature04032
  10. Graham, R.L.J., C. Graham, and G. McMullan. 2007. Microbial proteomics: a mass spectrometry primer for biologists. Microb. Cell Fact. 6, 26. https://doi.org/10.1186/1475-2859-6-26
  11. Graves, P.R. and T.A.J. Haystead. 2002. Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66, 39-63. https://doi.org/10.1128/MMBR.66.1.39-63.2002
  12. Jehmlich, N., F. Schmidt, M. von Bergen, H.H. Richnow, and C. Vogt. 2008. Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME J. 2, 1122-1133. https://doi.org/10.1038/ismej.2008.64
  13. Jerez, C.A. 2007. Proteomics and metaproteomics applied to biomining microorganisms, pp. 241-251. In E. Donati and W. Sand (ed.), Microbial Processing of Metal Sulfides, Springer, Germany.
  14. Kan, J., T.E. Hanson, J.M. Ginter, K. Wang, and F. Chen. 2005. Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Syst. 1, 7. https://doi.org/10.1186/1746-1448-1-7
  15. Klaassens, E.S., W.M. de Vos, and E.E. Vaughan. 2007. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl. Environ. Microbiol. 73, 1388-1392. https://doi.org/10.1128/AEM.01921-06
  16. Lacerda, C.M., L.H. Choe, and K.F. Reardon. 2007. Metaproteomic analysis of a bacterial community response to cadmium exposure. J. Proteome Res. 6, 1145-1152. https://doi.org/10.1021/pr060477v
  17. Lacerda, C.M.R. and K.F. Reardon. 2009. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief. Funct. Genomics Proteomics 8, 75-87.
  18. Lo, I., V.J. Denef, N.C. Verberkmoes, M.B. Shah, D. Goltsman, G. DiBartolo, G.W. Tyson, and et al.2007. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446, 537-541. https://doi.org/10.1038/nature05624
  19. Ogunseitan, O.A. 1993. Direct extraction of proteins from environmental samples. J. Microbiol. Methods 17, 273-281. https://doi.org/10.1016/0167-7012(93)90056-N
  20. Ogunseitan, O.A. 1997. Direct extraction of catalytic proteins from natural microbial communities. J. Microbiol. Methods 28, 55-63. https://doi.org/10.1016/S0167-7012(96)00962-1
  21. Park, C.and R.F. Helm. 2008. Application of metaproteomic analysis for studying extracellular polymeric substances (EPS) in activated sludge flocs and their fate in sludge digestion. Water Sci. Technol. 57, 2009-2015. https://doi.org/10.2166/wst.2008.620
  22. Pierre-Alain, M., M. Christophe, S. Severine, A. Houria, L. Philippe, and R. Lionel. 2007. Protein extraction and fingerprinting optimization of bacterial communities in natural environment. Microb. Ecol. 53, 426-434. https://doi.org/10.1007/s00248-006-9121-1
  23. Pierre-Alain, M., R. Lionel, M. Christophe, and L. Philippe. 2007. Metaproteomics: a new approach for studying functional microbial ecology. Microb. Ecol. 53, 486-493. https://doi.org/10.1007/s00248-006-9196-8
  24. Powell, M.J., J.N. Sutton, C.E. Del Castillo, and A.T. Timperman. 2005. Marine proteomics: generation of sequence tags for dissolved proteins in seawater using tandem mass spectrometry. Marine Chemistry 95, 183-198. https://doi.org/10.1016/j.marchem.2004.09.004
  25. Ram, R.J., N.C. VerBerkmoes, M.P. Thelen, G.W. Tyson, B.J. Baker, R.C. Blake II, M. Shah, and et al. 2005. Community proteomics of a natural microbial biofilm. Science 308, 1915-1920. https://doi.org/10.1126/science.1109070
  26. Rappe, M.S., S.A. Connon, K.L. Vergin, and S.J. Giovannoni. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630-633. https://doi.org/10.1038/nature00917
  27. Schulze, W.X., G. Gleixner, K. Kaiser, G. Guggenberger, M. Mann, and E.D. Schulze. 2005. A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142, 335-343. https://doi.org/10.1007/s00442-004-1698-9
  28. Schweder, T., S. Markert, and M. Hecker. 2008. Proteomics of marine bacteria. Electrophoresis 29, 2603-2616. https://doi.org/10.1002/elps.200800009
  29. Solaiman, Z., M.A. Kashem, and I. Matsumoto. 2007. Environmetal proteomics: extraction and identification of protein in soil, pp. 155-166. In A. Varma and R. Oelmuller (eds.), Advanced techniques in soil microbiology. Soil Biology vol 8, Springer- Verlag Berlin Heidelberg. Germany.
  30. Sowell, S.M., A.D. Norbeck, M.S. Lipton, C.D. Nicora, S.J. Callister, R.D. Smith, D.F. Barofsky, and S.J. Giovannoni. 2008. Proteomic analysis of stationary phase in the marine bacterium "Candidatus Pelagibacter ubique". Appl. Environ. Microbiol. 74, 4091-4100. https://doi.org/10.1128/AEM.00599-08
  31. Sowell, S.M., L.J. Wilhelm, A. D. Norbeck, M.S. Lipton, C.D. Nicora, D.F. Barofsky, C.A. Carlson, R.D. Smith, and S.J. Giovanonni. 2009. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3, 93-105. https://doi.org/10.1038/ismej.2008.83
  32. Taylor, E.B. and M.A. Williams. 2010. Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb. Ecol. 59, 390-399. https://doi.org/10.1007/s00248-009-9593-x
  33. Tyson, G.W., J. Chapman, P. Hugenholtz, E.E. Allen, R.J. Ram, P.M. Richardson, V.V. Solovyev, and et al.2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37-43. https://doi.org/10.1038/nature02340
  34. Valenzuela, L., A. Chi, S. Beard, A. Orell, N. Guiliani, J. Shabanowitz, D.F. Hunt, and C.A. Jerez. 2006. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol. Adv. 24, 197-211. https://doi.org/10.1016/j.biotechadv.2005.09.004
  35. Venter, J.C., K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D. Wu, and et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66-74. https://doi.org/10.1126/science.1093857
  36. Verberkmoes, N.C., A.L. Russell, M. Shah, A. Godzik, M. Rosenquist, J. Halfvarson, M.G. Lefsrud, and et al. 2009. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3, 179-189. https://doi.org/10.1038/ismej.2008.108
  37. Wilhelm, L.J., H.J. Tripp, S.A. Givan, D.P. Smith, and S.J. Giovannoni. 2007. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol. Direct 2, 27. https://doi.org/10.1186/1745-6150-2-27
  38. Wilmes, P., A.F. Andersson, M.G. Lefsrud, M. Wexler, M. Shah, B. Zhang, R.L. Hettich, and et al. 2008. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J. 2, 853-864. https://doi.org/10.1038/ismej.2008.38
  39. Wilmes, P.and P.L. Bond. 2004. The application of twodimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 6, 911-920. https://doi.org/10.1111/j.1462-2920.2004.00687.x
  40. Wilmes, P. and P.L. Bond. 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol. 14, 92-97. https://doi.org/10.1016/j.tim.2005.12.006
  41. Wilmes, P. and P.L. Bond. 2006. Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Sci. Technol. 54, 217-226. https://doi.org/10.2166/wst.2006.390
  42. Wilmes, P. and P.L. Bond. 2009. Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth's biogeochemical cycles. Curr. Opin. Microbiol. 12, 310-317. https://doi.org/10.1016/j.mib.2009.03.004
  43. Wilmes, P., M. Wexler, and P.L. Bond. 2008. Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 3, e1778. https://doi.org/10.1371/journal.pone.0001778
  44. Zhao, B. and C.L. Poh. 2008. Insights into environmental bioremediation by microorganisms through functional genomics and proteomics.Proteomics 8, 874-881. https://doi.org/10.1002/pmic.200701005