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INTRODUCTION 
 
Transplantation is one of greatest challenging 

achievements and saves thousands of lives each year. It also 
improves the quality of patients who present each year with 
organ failure. However, the transplanted organs are very 
insufficiency owing to the overwhelming demands for 
donated organs. Xenotransplantation may be one of the best 
possible approaches to solving the severe shortage of 
human donors, which greatly limits progress in clinical 
transplantation. Therefore, xenotransplantation is currently 
a hot topic in bio-organ of biomedical research. Among 
many species, pigs are suitable animals due to easier animal 
husbandry, comparatively similar anatomical and 
physiological similarities to human organs (Hughes, 1986; 
Pereira-Sampaio et al, 2004; Vodicka et al, 2005). These 

reports suggest that pigs can be used as alternative to the 
shortage of human organs, if we produce appropriate and 
optimal pig strain without immune response to human 
(Vodicka et al, 2005; Puga Yung et al, 2009). However, 
many crucial answers on efficacy and safety will ultimately 
only be solved by well designed and controlled solid organ 
xenotransplantation trials on humans. Therefore, further 
research on the potential effects of crossing the species 
barrier in pig-to-primate model is essential before clinical 
application is acceptable (Ravelingien et al., 2004; Ekser et 
al., 2009). This review article provides an overview of the 
rejection in pig xenotransplantation to primates, and 
genetically modified and clonged pig in xenotransplantation. 
It also highlights major target organs in porcine 
xenotransplantation and virus infection in 
xenotransplantation.  

 
REJECTION IN PORCINE 

XENOTRANSPLANTATION 
 
The most profound barrier to pig-to-primate 

xenotransplantation is the rejection of the grafted organ by a 
cascade of immune mechanisms commonly referred to as 
hyperacute rejection (HAR), acute vascular rejection 
(AVR)/humoral xenograft rejection (AHXR), immune cell-
mediated rejection, and chronic rejection. HAR leads to 
graft rejection within minutes, was considered as first 
barrier to pig-to-human xenotransplantation. Gala1, 3Gal 
(Gal), a particular carbohydrate, is majorly implicated in the 
development of hyperacute rejection of pig organs 
transplanted into humans and non-human primates (Good et 
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al., 1992; Cooper et al., 1993), since αGal epitope is absent 
in humans, apes, and monkeys. Genetically engineered 
‘‘knock-out’’ pigs that lack the a1,3-galactosyltransferase 
gene (GalT-KO) and thus do not express the Gal 
oligosaccharide have been used to improve the hyperacute 
rejection (Hisashi et al., 2008; Shimizu et al., 2008). 
Therapeutics for Gal also has several problems, since 
blocking of Gal attenuated hyperacute rejection but not 
AVR injury (Pierson, 2009). Classical complement 
pathways also are involved in the hyperacute rejection. 
Inefficient coagulation inhibitory pathways involving 
endothelial proteins such as thrombomodulin and tissue 
factor pathway inhibitor (TFPI) result in increase of 
thrombosis, although porcine endothelium exposed to 
human blood have somewhat similar mechanism compared 
to that of human endothelium exposed to human blood 
(Pierson et al., 2009). AVR/AHXR is defined as a rejection 
that begins within 24 h after transplantation and gradually 
destroys the graft (Platt, 1998). AVR is generally known to 
be initiated by xeno-reactive antibodies, including non-Gal 
antibodies and subsequent activation of the graft 
endothelium, the complement and the coagulation systems. 
It occurs within days by the humoral and cellular action of 
B lymphocytes and T lymphocytes. Antibodies targeting the 
CD 154/CD40 pathway were used to improve the rejection 
of T cell and B cell response to xenoantigen (Kawai et al., 
2000; Kirk and Harlan, 2001). Direct xenorecognition and 
indirect xenorecognition are available routes for 
presentation of pig antigens to primate T cells (Pierson et al., 
2009). CD40 and the B7 family proteins (CD80, CD86, and 
others), which are expressed on ‘‘antigen presenting cells’’, 
bind to CD154 and CD28 or CTLA-4, respectively, ligands 
which are expressed mainly on responding T cells. 
Therefore, blocking CD 28 or the F7 family can be a 
targeting for the rejection of porcine xenotransplantation 
into primates.  

Several lines of evidence indicates that NK cells play an 
important role in rejection of porcine xenografts into human 
(Inverardi et al., 1994; Khalfoun et al., 2000). The initiating 
cause of failure of pig xenografts may be antibody-mediated 
injury to the endothelium, leading to the development of 
microvascular thrombosis. Therefore, potential contributing 
factors to the development of microvascular thrombosis are 
the presence of preformed anti-non-Gal antibodies, the 
development of very low levels of elicited antibodies to 
non-Gal antigens, natural killer cell or macrophage activity, 
and inherent coagulation dysregulation between pigs and 
primates (Ekser et al., 2009).  

 
PORCINE GENETIC ENGINEERED MODEL FOR 

XENOTRANSPLANTATION  
 
Techniques for porcine genetic modification are crucial 

for xenotransplantation research. For germ-line gene 
transfer, retroviral vector (Cabot et al., 2001), lentiviral 
vectors (Hofmann et al., 2003; Whitelaw et al., 2004), 
sperm-mediated gene transfer (SMGT) (Lavitrano et al., 
2006) and somatic cell nuclear transfer (SCNT) were used. 
Lentiviral gene transfer has been used in a variety of 
experiments to transduce cells with various transgenes 
owing to high efficiency (Sachs and Galli, 2009). SMGT 
has also been used with a nonviral episomal vector 
(Manzini et al., 2006). SCNT has become the optimal tool 
for generating pig animals from genetically engineered 
somatic cells. Recently, the Cre site-specific DNA 
recombinase system, a powerful tool for manipulating DNA 
in vivo, has been used for porcine xenotransplantation 
(Prather et al., 2003; Lunney, 2007). A reporter pig strain 
containing the EGFP gene driven by the CMV promoter, 
was used, in which the EGFP gene is expressed only after 
Cre-mediated excision of loxP-flanked stop sequences. The 
EGFP will be conditionally expressed in the resulting 
embryos and adult pigs. The reporter pig strain is capable of 
generating recombinant animal tissue in which Cre-
mediated excision events can be studied in vivo in a variety 
of experimental contexts (reviewed in Li et al. in 2009).  

Engineered pigs are of great value for research and 
commercial applications and could serve as models for 
human disease (Brunetti et al., 2008). Porcine genetic 
engineered model is based upon the immune rejection 
abovementioned. Since HAR is mediated majorly by the 
antibody of Gala1, 3Gal (Gal), it is generally accepted that 
Gal KO is an important prophylactic genetic modification 
for xenotransplantation of vascularised organs. d'Apice and 
Cowan (2009) insisted that Gal KO pig is the basic 
“standard platform” pig on which other genetic 
modifications can be assembled. HAR may be overcome by 
using genetically modified donor pigs lacking functional 
GGTA1 expression. Competitive glycosylation strategies by 
transgenic expression of human alpha-1,2-
fucosyltransferase (alpha-1,2-FT) or human beta-1,4-N-
acetylglucosaminyltransferase III (GnT-III) were used to 
reduce alpha-1,3-Gal epitopes on porcine cells (reviewed in 
Klymiuk et al. in 2010). Transgenic pigs for human 
complement-regulatory proteins (CRPs) such as human 
decay-accelerating factor (hDAF), CD46 and CD59 have 
been characterized (Byrne et al., 1997; Cozzi et al., 1997; 
Diamond et al., 2001; Lee et al., 2010). Transgenic pigs for 
natural killer cell-mediated rejection were also established 
(Weiss et al., 2009). Recently triple transgenic 
(CD59/DAF/hTM) pigs are used to in pig 
xenotransplantation (Petersen et al., 2009). Therefore, the 
use of transgene or knock-out pig organs in pig-to-non-
human primate xenotransplantation can prevent HAR, AVR, 
and immune-mediated rejection, eventually extending 
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xenograft survival.  
 

MAJOR TARGET ORGANS OF PORCINE 
XENOTRANSPLANTATION 

 
The lack of sufficient numbers of donor organs resulted 

in the deaths of the patients. Xenotransplantation using pig 
organs could resolve the shortage of suitable donor organs 
(Cooper et al., 2002). The initiating cause of failure of pig 
xenografts may be antibody-mediated injury to the 
endothelium, leading to the development of microvascular 
thrombosis. In this paper, we would like to briefly introduce 
the major organs of porcine xenotransplantation.  

 
Porcine Liver transplantation 

The liver is the primary site of xenotransplantation. 
Liver transplantation offers several benefits for the 
treatment of patients with liver failure or acute liver failure 
and end-stage chronic liver disease. According to the review 
of Esker et al. (2009), during the past 13 years, 30,000 
patients have died waiting for a liver transplantation. 
Ramirez et al. (2000) transplanted livers from wild-type 
pigs or pigs transgenic for the human complement-
regulatory protein, human decay-accelerating factor (hDAF), 
into immunosuppressed baboons. Makowka et al. (1995) 
reported that there was an attempt to porcine liver 
xenotransplanation to human, eventually resulting in the 
death without success. Recently, Ekser et al. (2010) 
reported that after the transplantation of genetically 
engineered pig livers into baboons i) many parameters of 
hepatic function, including coagulation, were normal or 
near normal; ii) there was evidence for production of pig 
proteins, including coagulation factors; and iii) these 
appeared to function adequately in baboons although 
interspecies compatibility of such proteins remains to be 
confirmed. This report gives us good possibility that the 
liver xenotransplantation may be applicable to clinical 
usage in human in future. Some reports suggest that pig 
livers may be rejected less vigorously than other pig organs 
(Tuso et al., 1993; Tector et al., 2001). They observed that 
xenoperfused pig livers may function for up to 5 h, in 
contrast to porcine kidneys or hearts. According to the 
reports of Ramirez et al. (2000; 2001), 3 baboons 
transplanted with livers from unmodified pigs survived for 
<12 h with the response of HAR but two baboons 
transplanted with livers from pigs transgenic for hDAF 
survived for 4 and 8 days. These reports suggest that if 
HAR is abrogated (by the presence of hDAF), the porcine 
liver can maintain reasonable levels of coagulation factors 
and protein in the baboon for up to 8 days (Hara et al., 
2008). Porcine hepatocyte transplantation also could be 
proposed as a method to support patients with liver 

insufficiency (Gewartowska and Olszewski, 2007). 
 

Porcine cardiac xenotransplation 
Use of a pig heart as a bridge to allotransplantation 

could be a solution due to heart deficiency organ. 
Orthotopic pig-to-baboon heart transplantation is the 
accepted preclinical model for cardiac xenotransplantation 
in humans, although heterotopic thoracic pig-to-baboon 
heart transplantation was reported (Bauer et al., 2010). 
When the hearts from hdAF transgenic pigs were perfused 
with human blood, HAR was avoided and the hearts were 
relatively metablically and functionally stable (Smolenski et 
al., 2007). Hisashi et al. (2008) observed that no hyperacute 
rejection developed and one graft survived up to 6 months 
after transplantation. However, they also indicated that all 
GalT-KO heart grafts underwent graft failure with AHXR 
and/or chronic rejection. In recent report, the role of alpha-
1,3-galactosyltransferase (alpha-Gal) antigen in valve 
calcification by comparing alpha-Gal-positive and alpha-
Gal-deficient (GT-KO) pig pericardium was examined to 
improve the use of heart valve in xenotransplantation (Lila 
et al., 2010). Qv et al. (2009) observed that complement is 
dysregulated in heart xenotransplanation in pig-to-primate 
models. These reports suggest that the rejection should be 
overcome in porcine heart xenotransplantation. Cooper et al. 
(2010) provided several guidances as preliminary 
requirements in animal models in porcine 
xenotransplantation. i) Heterotopically-placed pig heart 
grafts survive and function fairly consistently (eg, 7 of 10) 
for at least 6 months. ii) Orthotopically-placed pig heart 
grafts survive and function fairly consistently (eg, 7 of 10) 
for >3 months, with some primates surviving >6 months 
(Cooper et al., 2000). iii) Absence of life-threatening 
consumptive coagulopathy (Buhler et al., 2000; Lin et al., 
2009; 2010). 4. Low incidence of immunosuppression-
related complications, such as infection and malignancy 
(Teotia et al., 2005). They also insisted that patient selection 
must be considered. In the heart, the left ventricular 
pressure by telemetry proved to be the most valuable 
parameter to assess graft heart function in pig-to-primate 
models (Horvath et al., 2010).  

 
Porcine renal xenotransplantation 

Kirkeby and Mikkelsen (2008) reported the distribution 
of the alphaGal- and the non-alphaGal T-antigens in the pig 
kidney, suggesting the potential targets for rejection in pig-
to-man xenotransplantation. Kidneys from normal pigs 
were almost rejected rapidly by antibody-mediated 
complement injury. In HAR, the recognition of pig antigens, 
predominantly Galα1,3Gal (Gal), by primate natural 
antibodies leads to complement activation, resulting in 
extensive intravascular coagulation and thrombosis, 
endothelial injury, interstitial hemorrhage and edema, and 
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infiltration of polymorphonuclear leukocytes into the 
tissues (Shimizu and Yamada, 2006). An attempt to 
eliminate hyperacute rejection with human and baboon 
antibody in GalT-KO kidney has been tried (Diswall et al., 
2010). Chen et al. (2005) reported that acute rejection is 
associated with antibodies to non-Gal antigens in baboons 
using Gal-knockout pig kidneys. They also suggest that 
non-Gal antibodies are associated with the development of 
acute humoral xenograft rejection of hDAF transgenic 
porcine kidneys in baboons receiving anti-Gal antibody 
neutralization therapy (Chen et al., 2005). Renal endothelial 
heterogeneity accelerates AVR in pig-to-baboon 
xenotransplantation, compared to heart xenografts 
(Knosalla et al., 2009). With full immunosuppression, there 
was deposition of IgM, IgG, and complement, and 
neutrophil and macrophage infiltration, but there was 
minimal T and B cell infiltration, and no evidence of a T-
cell-dependent elicited antibody response, extending the 
kidney xenograft to 3 days (Ezzelarab et al., 2009). 
Recently Lin et al. (2010) reported that prevention of 
recipient platelet activation may be crucial for successful 
pig-to-primate kidney transplantation. The challenges for 
the prevention of human and baboon blood immune 
responses in kidney transplantation have been attempted 
(Diswall et al., 2010).  

 
Pancreatic islet xenotransplantation 

High yields of pure and viable porcine islet cells to be 
used for microencapsulation are crucial for successful 
xenotransplantation and the reduction of the damage in 
porcine islet isolation should be considered (Stiegler et al., 
2010). Islet transplantation into the portal vein is the current 
clinical practice. This method can induce the dysfunction in 
islet engraftment and survival owing to low oxygen tension, 
an active innate immune system, and the provocation of an 
inflammatory response, eventually resulting in the loss of 
many transplanted islets. Thus, subcutaneous 
transplantation has been recommended as an alternative 
choice (van der Windt et al., 2008).  

Adult and neonatal pig islets xeno-transplanted in 
immunosuppressive nonhuman primates survived for more 
than 6 months (Cardona et al., 2006; Hering et al., 2006). 
These reports are encouraging since porcine pancreatic 
xenograft can survive longer than other xenograft organs, 
suggesting the crucial clue in xenotransplantation. Several 
investigators alleged that xenotransplantaion of pig 
pancreatic primoria may be a candidate model as a 
therapeutics for both types 1 and 2 diabetes (Thomas et al., 
1995; Rogers et al., 2006). Rogers et al. (2007) 
demonstrated that transplantation of embryonic day (E) 28 
(E28) pig pancreatic primordia into the mesentery of STZ-
diabetic rhesus macaques reduced insulin requirement, 
suggesting the availability for diabetes. Although the report 

of porcine pancreatic islets xenograft into non-human 
primates was restricted to type I diabetes (van der Windt et 
al., 2009; Cooper and Casu, 2009), the usefulness in type II 
diabetes also remains to be attempted. Komoda et al. (2005) 
have demonstrated that islets from transgenic pigs 
expressing N-acetylglucosaminyltransferase-III showed 
prolonged survival after transplantation into cynomolgus 
monkeys.  

 
PORCINE VIRUS INFECTION 

 
Substitution of human organs to pig organs raises 

concerns about the risks of transfer of infectious agents 
from the pig cells to xenotransplantation recipients. Among 
many viruses, porcine endogenous retroviruses (PERVs) are 
important candidate to these problems. A major concern in 
pig-to-human xenotransplantations is the potential risk of 
transmission of PERVs integrated in the pig genome. 
Careful selection and/or genetic-engineering of pig herds 
should aid in minimizing the risk of PERVs infection and/or 
pathogenicity. Two types of PERV are present in pigs, 
human-tropic PERV-A and PERV-B, which are both present 
in the genome of all pigs, and PERV-C, which is not 
ubiquitous and infects only pig cells (Denner et al., 2009). 
Yu et al. (2009) indicated that a short-term and long-term 
PERV infection of HEK-293 cells in vitro does not result in 
any significant changes in host cells as well as in PERV 
LTR sequence.  

The major strategies used to reduce hyperacute 
hyperacute rejection such as depletion of anti-Gal 
antibodies and genetic engineering of swine to express 
human complement regulatory proteins to decrease 
complement deposition, might impact host defenses against 
viral infection (Meije et al., 2010). Increased levels of 
circulating PERV virus have not been detected in the GalT-
KO swine or in immunosuppressed baboon recipients of 
GalT-KO grafts (Issa et al., 2007). To reduce the risk of 
PERV infection in xenograft recipients, diverse strategies 
are attempted, including use of nontransmitting swine or 
swine without active PERV loci as source animals, use of 
antiretroviral agents in recipients, viral vaccines, or the 
reduction of viral replication in vitro using RNA 
interference, various antibody therapies and amplification 
of antiviral restriction factors (Dieckhoff et al., 2007; Meije 
et al., 2010). In addition to PERV, porcine cytomegalovirus, 
herpesvirus, and hepatitis E virus also should be controlled 
since these viruses are common in immune-suppressed 
recipients of allotransplants (Mueller et al., 2004; Kamar et 
al., 2008).  

 
CONCLUSION  

 
In this review, we described the basic concept of the 
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rejection in pig-to primate xenotransplantation. The 
rejection of porcine xenotransplantation should be solved 
before clinical application to human. We also discussed a 
number of genetic engineered pig models used in 
xenotransplantation, and several important organs in 
porcine xenotransplantation. Further research for genetic 
modification of the organ-source pig will be prosperous. 
These may be associated with the identification of pig non-
Gal antigens that are targets for natural or elicited 
antibodies, natural killer cells, and/or macrophages. 
Although genetically-modified pigs have overcome the 
problem of HAR, coagulation dysregulation between 
species remains an important challenge. In addition, the 
risks of the approaches to cell function and to the health of 
the recipient should be carefully evaluated. It is important to 
emphasize that the escape from PERV is essential for the 
complete success of porcine xenotransplantatoin into non-
human primates before human clinical trials. It is generally 
recognized that success of xentransplantation into non-
human primate model should be preceded prior to human 
clinical application. Therefore, all efforts to solve many 
obstacles in porcine xenotransplantation should probably be 
performed.  
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