DOI QR코드

DOI QR Code

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D. (Novus International, Inc.) ;
  • Zhao, Junmei (Novus International, Inc.) ;
  • Harrell, Robert J. (Novus International, Inc.) ;
  • Atwell, Cindy A. (Novus International, Inc.) ;
  • Dibner, Julia J. (Novus International, Inc.)
  • 발행 : 2010.11.01

초록

Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.

키워드

참고문헌

  1. Andreini, C., L. Banci, I. Bertini and A. Rosato. 2006. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5:196-201. https://doi.org/10.1021/pr050361j
  2. Baker, D. H. and C. B. Ammerman. 1995. Zinc Bioavailability. In: Bioavailability of nutrients for animals: amino acids, minerals, and vitamins (Ed. C. B. Ammerman, D. H. Baker and A. J. Lewis). Academic Press, San Diego, CA. pp. 367-398.
  3. Blanchard, R. K., J. B. Moore, C. L. Green and R. J. Cousins.2001. Modulation of intestinal gene expression by dietary zinc status: effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. Proc. Natl. Acad. Sci. USA 98:13507-13513. https://doi.org/10.1073/pnas.251532498
  4. Brown, T. F. and L. K. Zeringue. 1994. Laboratory Evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. J. Dairy Sci. 77:181-189. https://doi.org/10.3168/jds.S0022-0302(94)76940-X
  5. Buckley, D. J., P. A. Morrissey and J. I. Gray. 1995. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 73:3122-3130.
  6. Cao, J., P. R. Henry, R. Guo, R. A. Holwerda, J. P. Toth, R. C.Littell, R. D. Miles and C. B. Ammerman. 2000. Chemical characteristics and relative bioavialability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci. 78:2039-2054.
  7. Coleman, J. E. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61:897-946. https://doi.org/10.1146/annurev.bi.61.070192.004341
  8. Cousins, R. J., R. K. Blanchard, J. B. Moore, L. Cui, C. L. Green,J. P. Liuzzi, J. Cao and J. A. Bobo. 2003. Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133:1521S-1526S.
  9. Cui, L., Y. Takagi, M. Wasa, K. Sando, J. Khan and A. Okada.1999. Nitric oxide synthase inhibitor attenuates intestinal damage induced by zinc deficiency in rats. J. Nutr. 129:792-798.
  10. Dibner, J. J. 2005. Early nutrition of zinc and copper in chicks and poults: impact on growth and immune function. Proc. 2005 Proceedings of the 3rd Mid-Atlantic Nutrition Conference, Timonium, MD.
  11. Dibner, J. J., C. A. Atwell, M. L. Kitchell, W. D. Shermer and F. J.Ivey. 1996. Feeding of oxidized fats to broilers and swine: effects on enterocyte turnover, hepatocyte proliferation and the gut associated lymphoid tissue. Anim. Feed Sci. Technol. 62:1-13. https://doi.org/10.1016/S0377-8401(96)01000-0
  12. Dibner, J. J., J. D. Richards, M. L. Kitchell and M. A. Quiroz.2007. Metabolic challenges and early bone development. J. Appl. Poult. Res. 16:126-137. https://doi.org/10.1093/japr/16.1.126
  13. Dreosti, I. E. 2001. Zinc and the gene. Mutat. Res. 475:161-167. https://doi.org/10.1016/S0027-5107(01)00067-7
  14. Fawcett, D. W. 1994. Bone. in Bloom and Fawcett: A textbook of histology Chapman & Hall, New York.
  15. Ferket, P. R., E. O. Oviedo-Rondón, P. L. Mente, D. V. Bohórquez,A. A. Santos Jr., J. L. Grimes, J. D. Richards, J. J. Dibner andV. Felts. 2009. Organic trace minerals and 25-hydroxycholecalciferol affect performance characteristics, leg abnormalities and biomechanical properties of leg bones of turkeys. Poult Sci. 88:118-131. https://doi.org/10.3382/ps.2008-00200
  16. Formigari, A., P. Irato and A. Santon. 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp. Biochem. Physiol. 146:443-459.
  17. Fraker, P. J. 2005. Roles for cell death in zinc deficiency. J. Nutr. 135:359-362.
  18. Fraker, P. J., L. E. King, T. Laakko and T. L. Vollmer. 2000. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 130:1399S-1406S.
  19. Gallup, W. and L. Norris. 1939. The effect of a deviciency of manganese in the diet of the hen. Poult. Sci. 18:83-88. https://doi.org/10.3382/ps.0180083
  20. Girotti, A. W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39:1529-1542.
  21. Guenthner, E., C. Carlson and R. Emerick. 1978. Copper salts for growth stimulation and alleviation of aortic rupture losses in turkeys. Poult. Sci. 57:1313-1324. https://doi.org/10.3382/ps.0571313
  22. Guo, R., P. R. Henry, R. A. Holwerda, J. Cao, R. C. Littell, R. D.Miles and C. B. Ammerman. 2001. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. J. Anim. Sci. 79:1132-1141.
  23. Ho, E. and B. N. Ames. 2002. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA. 99:16770-16775. https://doi.org/10.1073/pnas.222679399
  24. Ho, E., C. Courtemanche and B. N. Ames. 2003. Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133:2543-2548.
  25. Honda, Y. and S. Honda. 1999. The daf-2 gene network for longevity regulates oxidative stress resistance and Mnsuperoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13:1385-1393.
  26. Huang, Y. L., L. Lu, S. F. Li, X. G. Luo and B. Liu. 2009. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional cornsoybean meal diet. J. Anim. Sci. 87:2038-2046. https://doi.org/10.2527/jas.2008-1212
  27. Ibs, K.-H. and L. Rink. 2003. Zinc-altered immune function. J. Nutr. 133:1452S-1456S.
  28. Iqbal, M., N. R. Pumford, Z. X. Tang, K. Lassiter, T. Wing, M.Cooper and W. Bottje. 2004. Low feed efficient broilers within a single genetic line exhibit higher oxidative stress and protein expression in breast muscle with lower mitochondrial complex activity. Poult. Sci. 83:474-484. https://doi.org/10.1093/ps/83.3.474
  29. Kokoszka, J. E., P. Coskun, L. A. Esposito and D. C. Wallace. 2001. Increased mitochondrial oxidative stress in the Sod2(+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc. Natl. Acad. Sci. USA 98:2278-2283. https://doi.org/10.1073/pnas.051627098
  30. Leeson, S. and J. D. Summers. 2001. Scott's Nutrition of the Chicken. 4th Ed. University Books, Guelph, Ontario.
  31. Manangi, M. K., T. Hampton, P. Fisher, J. D. Richards, M.Vazquez-Anon and K. D. Christensen. 2010. Impact of feeding lower levels of chelated minerals vs. industry levels of inorganic trace minerals on broiler performance, yield, foot pad health, and litter minerals concentration. Proc. 2010 International Poultry Scientific Forum Atlanta, GA.
  32. Mayne, S. T. 2003. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J. Nutr. 133:933S-940S.
  33. Moghaddam, H. N. and R. Jahanian. 2009. Immunological responses of broiler chicks can be modulated by dietary supplementation of zinc-methionine in place of inorganic zinc sources. Asian-Aust. J. Anim. Sci. 22:396-403. https://doi.org/10.5713/ajas.2009.80473
  34. O'Dell, B., B. Harkwick, G. Reynolds and J. Savage. 1961. Connective tissue defect in the chick resulting from copper deficiency. Proc. Soc. Exp. Biol. Med. 108:402-405. https://doi.org/10.3181/00379727-108-26951
  35. O'Dell, B. L. 1989. Mineral interactions relevant to nutrient requirements. J. Nutr. 119:1832-1838.
  36. Oberleas, D., M. E. Muhrer and B. L. O'Dell. 1966. Dietary metalcomplexing agents and zinc availability in the rat. J. Nutr. 90:56-62.
  37. Opsahl, W., H. Zeronian, M. Ellison, D. Lewis, R. B. Rucker andR. Riggins. 1982. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J. Nutr. 112:708-716.
  38. Orr, W. C. and R. S. Sohal. 1994. Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128-1130. https://doi.org/10.1126/science.8108730
  39. Pardo, A. and M. Selman. 2005. MMP-1: the elder of the family. Int. J. Biochem. Cell Biol. 37:283-288. https://doi.org/10.1016/j.biocel.2004.06.017
  40. Parkes, T. L., A. J. Elia, D. Dickson, A. J. Hilliker, J. P. Phillipsand G. L. Boulianne. 1998. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19:171-174. https://doi.org/10.1038/534
  41. Payne, R. L. and L. L. Southern. 2005. Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poult. Sci. 84:1268-1276. https://doi.org/10.1093/ps/84.8.1268
  42. Rath, N. C., J. M. Balog, W. E. Huff, G. R. Huff, G. B. Kulkarniand J. F. Tierce. 1999. Comparative differences in the composition and biomechanical properties of tibiae of sevenand seventy-two-week-old male and female broiler breeder chickens. Poult. Sci. 78:1232-1239. https://doi.org/10.1093/ps/78.8.1232
  43. Rath, N. C., W. E. Huff, J. M. Balog, G. R. Bayyari and R. P.Reddy. 1997. Matrix metalloproteinase activities in avian tibial dyschondroplasia. Poult. Sci. 76:501-505. https://doi.org/10.1093/ps/76.3.501
  44. Richards, J. D., C. A. Atwell, C. W. Wuelling and M. E. Wehmeyer.2007. A real time polymerase chain reaction assay for metallothionein to measure bioavailability of zinc sources for chickens. Proc. International Poultry Scientific Forum, Atlanta, GA.
  45. Richards, J. D., P. Fisher, T. D. Wineman, C. A. Atwell and K. J.Wedekind. 2010. Estimation of the Zn bioavailability of a Zn chelate relative to Zn sulfate based on tibia Zn and small intestinal metallothionein expression in 2010 International Poultry Scientific Forum, Atlanta, GA.
  46. Richards, J. D., T. Hampton, C. W. Wuelling, M. E. Wehmeyer, M.L. Kitchell and J. J. Dibner. 2005. Mintrex Zn organic trace mineral (zinc bis[-2-hydroxy-4-methylthiobutyrate]) serves as a zinc and methionine source, and improves performance, intestinal epithelial lifespan, gut breaking strength and tibia zinc in broilers. in 2005 International Poultry Scientific Forum, Atlanta, GA.
  47. Rothstein, J. D., L. A. Bristol, B. Hosler, R. H. Brown Jr and R. W. Kunel. 1994. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc. Natl. Acad. Sci. USA. 91:4155-4159. https://doi.org/10.1073/pnas.91.10.4155
  48. Rucker, R. B., T. Kosonen, M. S. Clegg, A. E. Mitchell, B. R.Rucker, J. Y. Uriu-Hare and C. L. Keen. 1998. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am. J. Clin. Nutr. 67(Suppl):996S-1002S.
  49. Shankar, A. H. and A. S. Prasad. 1998. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68(Suppl):447S-463S.
  50. Sheehy, P. J. A., P. A. Morrissey and A. Flynn. 1994. Consumption of thermally-oxidized sunflower oil by chicks reduces $\alpha$-tocopherol status and increases susceptibility of tissues to lipid oxidation. Br. J. Nutr. 71:53-65. https://doi.org/10.1079/BJN19940110
  51. Song, Y., S. W. Leonard, M. G. Traber and E. Ho. 2009. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J. Nutr. 139:1626-1631. https://doi.org/10.3945/jn.109.106369
  52. Spears, J. W. and W. P. Weiss. 2008. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 176:70-76. https://doi.org/10.1016/j.tvjl.2007.12.015
  53. Starcher, B. C., C. H. Hill and J. G. Madaras. 1980. Effect of zinc deficiency of bone collagenase and collagen turnover. J. Nutr. 110:2095-2102.
  54. Troy, C. M. and M. L. Shelanski. 1994. Downregulation of copper/zinc superoxide dismutase (SOD1) causes neuronal cell death. Proc. Natl. Acad. Sci. USA. 91:6384-6387. https://doi.org/10.1073/pnas.91.14.6384
  55. Underwood, E. J. and N. F. Suttle. 1999. The mineral nutrition of livestock. 3rd Edition. CABI Publishing, New York.
  56. Vallee, B. L. and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Phys. Rev. 73:79-118. https://doi.org/10.2466/pr0.1993.73.1.79
  57. Wedekind, K. J., A. E. Hortin and D. H. Baker. 1992.Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 70:178-187.
  58. Zhao, J., R. B. Shirley, T. R. Hampton, J. D. Richards, R. J. Harrell,J. J. Dibner, C. D. Knight and M. Vazquez-Anon. 2008. Benefits of an organic trace mineral on performance with dietary Cu antagonism in broilers. Poultry Scienc Association 97th Annual Meeting, July 20-23, 2008, Niagara Falls, Canada.

피인용 문헌

  1. Dietary Mineral Sources Altered Lipid and Antioxidant Profiles in Broiler Breeders and Posthatch Growth of Their Offsprings vol.145, pp.3, 2012, https://doi.org/10.1007/s12011-011-9196-5
  2. Effects of Methionine Hydroxy Analog Chelated Cu/Mn/Zn on Laying Performance, Egg Quality, Enzyme Activity and Mineral Retention of Laying Hens vol.49, pp.1, 2012, https://doi.org/10.2141/jpsa.011055
  3. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals vol.93, pp.1, 2013, https://doi.org/10.3382/ps.2013-03190
  4. Effects of a Chelated Copper as Growth Promoter on Performance and Carcass Traits in Pigs vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13416
  5. Dissemination of Antibiotic Resistance Genes in Representative Broiler Feedlots Environments: Identification of Indicator ARGs and Correlations with Environmental Variables vol.48, pp.22, 2014, https://doi.org/10.1021/es5041267
  6. Effects of Organic and Inorganic Forms of Manganese, Zinc, Copper, and Chromium on Bioavailability of These Minerals and Calcium in Late-Phase Laying Hens vol.167, pp.2, 2015, https://doi.org/10.1007/s12011-015-0313-8
  7. Antioxidant capacity and concentration of redox-active trace mineral in fully weaned intra-uterine growth retardation piglets vol.6, pp.1, 2015, https://doi.org/10.1186/s40104-015-0047-7
  8. Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet vol.99, pp.09312439, 2015, https://doi.org/10.1111/jpn.12307
  9. The Role of Zinc, Manganse and Copper in Rumen Metabolism and Immune Function: A Review Article vol.06, pp.04, 2016, https://doi.org/10.4236/ojas.2016.64035
  10. Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0072-1
  11. Effect of Boswellia serrata Resin Supplementation on Basic Chemical and Mineral Element Composition in the Muscles and Liver of Broiler Chickens vol.179, pp.2, 2017, https://doi.org/10.1007/s12011-017-0966-6
  12. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review vol.18, pp.01, 2017, https://doi.org/10.1017/S1466252316000207
  13. The effect of feed supplementation with a copper-glycine chelate and copper sulphate on selected humoral and cell-mediated immune parameters, plasma superoxide dismutase activity, ceruloplasmin and cytokine concentration in broiler chickens pp.09312439, 2017, https://doi.org/10.1111/jpn.12750
  14. Comparative effect of Melissa officinalis aqueous extract, sulfadimidine, and vitamin E–selenium on antioxidant parameters in rabbit experimental coccidiosis pp.1618-565X, 2017, https://doi.org/10.1007/s00580-017-2601-5
  15. No Protective Effects of High-Dosage Dietary Zinc Oxide on Weaned Pigs Infected with Salmonella enterica Serovar Typhimurium DT104 vol.79, pp.9, 2013, https://doi.org/10.1128/AEM.03577-12
  16. Multitrial analysis of the effects of copper level and source on performance in nursery pigs1 vol.93, pp.2, 2015, https://doi.org/10.2527/jas.2014-7796
  17. Trace Mineral Sources and Rosemary Oil in the Diet of Brown Laying Hens: Egg Quality and Lipid Stability vol.19, pp.4, 2017, https://doi.org/10.1590/1806-9061-2016-0369
  18. Comparison of Inorganic and Organically Bound Trace Minerals on Tissue Mineral Deposition and Fecal Excretion in Broiler Breeders pp.1559-0720, 2019, https://doi.org/10.1007/s12011-018-1460-5
  19. (Brandt 1869) vol.24, pp.4, 2018, https://doi.org/10.1111/anu.12670
  20. The Effect of Different Levels of Cu, Zn and Mn Nanoparticles in Hen Turkey Diet on the Activity of Aminopeptidases vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051150
  21. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates vol.95, pp.8, 2012, https://doi.org/10.3168/jds.2012-5404
  22. The Influence of Hen Aging on Eggshell Ultrastructure and Shell Mineral Components vol.38, pp.5, 2010, https://doi.org/10.5851/kosfa.2018.e41
  23. Epididymal Sperm Characteristics, Testicular Morphometric Traits and Growth Parameters of Rabbit Bucks Fed Dietary Saccharomyces cerevisiae and/or Zinc Oxide vol.21, pp.1, 2010, https://doi.org/10.1590/1806-9061-2018-0803
  24. Mineral supplementation: effects on bone integrity and intestinal morphometry of broiler chickens challenged with Eimeria sp vol.69, pp.1, 2010, https://doi.org/10.2478/acve-2019-0006
  25. Organic trace minerals on productive performance, egg quality and immune response in Bovans White laying hens vol.103, pp.5, 2010, https://doi.org/10.1111/jpn.13156
  26. Effect of Different Levels and Sources of Dietary Copper, Zinc and Manganese on the Performance and Immune and Redox Status of Turkeys vol.9, pp.11, 2010, https://doi.org/10.3390/ani9110883
  27. Antioxidant and Anti-Inflammatory Effects of Different Zinc Sources on Diquat-Induced Oxidant Stress in a Piglet Model vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/3464068
  28. Water amino acid-chelated trace mineral supplementation decreases circulating and intestinal HSP70 and proinflammatory cytokine gene expression in heat-stressed broiler chickens vol.98, pp.3, 2010, https://doi.org/10.1093/jas/skaa049
  29. Interactive effects of zinc and copper sources and phytase on growth performance, mineral digestibility, bone mineral concentrations, oxidative status, and gut morphology in nursery pigs vol.4, pp.2, 2010, https://doi.org/10.1093/tas/txaa083
  30. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens vol.33, pp.4, 2010, https://doi.org/10.5713/ajas.19.0270
  31. Effect of dietary inclusion of antioxidants and organic trace minerals on growth performance, carcass characteristics, and meat quality of finishing pigs with pre-slaughter transportation vol.100, pp.3, 2020, https://doi.org/10.1139/cjas-2019-0177
  32. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter vol.61, pp.5, 2010, https://doi.org/10.1080/00071668.2020.1764908
  33. Effects of Replacing Inorganic with Respective Complexed Glycinate Minerals on Apparent Mineral Bioavailability and Deposition Rate in Tissues of Broiler Breeders vol.198, pp.2, 2010, https://doi.org/10.1007/s12011-020-02102-1
  34. Efficacy of L -glutamic acid, N,N-diacetic acid to improve the dietary trace mineral bioavailability in broilers vol.98, pp.12, 2010, https://doi.org/10.1093/jas/skaa369
  35. Dietary Phosphorus and Calcium Utilization in Growing Pigs: Requirements and Improvements vol.8, pp.None, 2010, https://doi.org/10.3389/fvets.2021.734365
  36. Effects of green light emitting diode light during incubation and dietary organic macro and trace minerals during rearing on tibia characteristics of broiler chickens at slaughter age vol.100, pp.2, 2010, https://doi.org/10.1016/j.psj.2020.11.042
  37. The effect of trace minerals on the stability of retinol acetate, cholecalciferol and selenomethionine stability within premixes vol.9, pp.1, 2021, https://doi.org/10.3920/jaan2021.0002
  38. The importance of nutrition in preventing heat stress at poultry vol.77, pp.3, 2010, https://doi.org/10.1080/00439339.2021.1938340
  39. Efficacy of manganese pantothenate and lysinate chelates for prevention of perosis in broiler chickens vol.12, pp.2, 2010, https://doi.org/10.15421/022138
  40. Nutrition and Metabolism of Minerals in Fish vol.11, pp.9, 2021, https://doi.org/10.3390/ani11092711
  41. Investigating trace metal precipitation in highly concentrated cell culture media with Pourbaix diagrams vol.118, pp.10, 2010, https://doi.org/10.1002/bit.27865
  42. Copper Nanoparticles as Growth Promoter, Antioxidant and Anti-Bacterial Agents in Poultry Nutrition: Prospects and Future Implications vol.199, pp.10, 2010, https://doi.org/10.1007/s12011-020-02485-1
  43. Effect of replacing inorganic trace minerals at lower organic levels on growth performance, blood parameters, antioxidant status, immune indexes, and fecal mineral excretion in weaned piglets vol.53, pp.1, 2021, https://doi.org/10.1007/s11250-021-02561-1
  44. Enhancement of tibia bone and eggshell hardness through the supplementation of bio-calcium derived from fish bone mixed with chelated trace minerals and vitamin D3 in laying duck diet vol.14, pp.None, 2010, https://doi.org/10.1016/j.vas.2021.100204
  45. Tolerance and safety evaluation of L-glutamic acid, N,N-diacetic acid as a feed additive in broiler diets vol.101, pp.2, 2010, https://doi.org/10.1016/j.psj.2021.101623