DOI QR코드

DOI QR Code

Effect of Using Organic Acids to Substitute Antibiotic Growth Promoters on Performance and Intestinal Microflora of Broilers

  • Hassan, H.M.A. (Department of Animal Production, National Research Center) ;
  • Mohamed, M.A. (Department of Animal Production, National Research Center) ;
  • Youssef, Amani W. (Department of Animal Production, National Research Center) ;
  • Hassan, Eman R. (Department of Poultry Diseases, National Research Center)
  • Received : 2010.03.09
  • Accepted : 2010.04.23
  • Published : 2010.10.01

Abstract

A grower broiler experiment (from 14 to 35 days of age) was conducted to study the effect of using two commercial mixtures of organic acids (Galliacid$^{(R)}$ and Biacid$^{(R)}$) to substitute antibiotic growth promoter (Eneramycin$^{(R)}$) on performance, carcass characteristics and intestinal microflora. 400 (Ross 308) broiler chicks were used. A basal corn-soybean meal diet were formulated and served as a control treatment. The control diet was supplemented with either 0.06% Galliacid, 0.1% Biacid or 0.02% Eneramycin. Birds fed the Galliacid-supplemented diet had 16% (p<0.001) more gain than the control, while those fed the Biacid- or Enramycinsupplemented diets recorded 3 and 5.5% more gain, respectively. Organic acids mixtures and Enramycin supplementation significantly (p<0.001) improved feed conversion ratio. These results indicated that birds fed either organic acid mixtures or Enramycinsupplemented diets utilized feed more efficiently than those fed the control diet. Galliacid significantly (p<0.01) increased dressing percentage and bursa weight (% body weight). No significant differences were detected on liver, spleen and thymus (% body weight) among treatments. Galliacid or Biacid significantly (p<0.001) decreased intestinal Escherichia coli and Salmonella compared to the control and Enramycin-supplemented diets. Dietary Enramycin significantly (p<0.001) decreased Escherichia coli, but had no effect on Salmonella counts. In conclusion, organic acid mixtures are more efficient than antibiotic growth promoter (Enramycin) in improving broiler performance and decreasing intestinal Escherichia coli and Salmonella spp., and could be successfully used to substitute antibiotic growth promoters in broiler diets. However, not all of the organic acid mixtures gave the same effect either on performance or intestinal bacterial counts.

Keywords

References

  1. Abd El-Hakim, A. S., G. Cherian and M. N. Ali. 2009. Use of organic acids, herbs and their combination to improve the utilization of commercial low protein broiler diets. Int. J. Poult. Sci. 8(1):14-20. https://doi.org/10.3923/ijps.2009.14.20
  2. Abdel-Fattah, S. A., M. H. El-Sanhoury, N. M. El-Mednay and F. Abdel-Azeem. 2008. Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. Int. J. Poult. Sci. 7(3):215-222. https://doi.org/10.3923/ijps.2008.215.222
  3. Amakye-amin, J., T. L. Lin, P. Y. Hester, D. Thiagarajan, P. A.Watkins and C. C. Wu. 2000. Ascorbic acid supplementation improved antibody response to infection bursal disease vaccination in chicks. Poult. Sci. 79:680-688. https://doi.org/10.1093/ps/79.5.680
  4. Ao, T., A. H. Cantor, A. J. Pescatore, M. J. Ford, J. L. Pierce and K.A. Dawson. 2009. Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poult. Sci. 88:111-117. https://doi.org/10.3382/ps.2008-00191
  5. Berchieri, A., Jr. and P. A. Barrow. 1996. Reduction in incidence of experimental fowl typhoid by incorporation of a commercial formic acid preparation ($Bio-Add^{TM}$) into poultry feed. Poult. Sci. 75:339-341. https://doi.org/10.3382/ps.0750339
  6. Brul, S. and P. Coote. 1999. Preservative agents in foods, mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50:1-17. https://doi.org/10.1016/S0168-1605(99)00072-0
  7. Collins, C. H. and P. M. Lyne. 1984. Microbiological methods. Fifth Edition, Butterworth's, London, 331- 345.
  8. Cowan, W. D., A. Korsbak, T. Hastrup and P. B. Rasmussen. 1996.Influence of added microbial enzymes on energy and protein availability of selected feed ingredients. Anim. Feed Sci. Technol. 60:311-319. https://doi.org/10.1016/0377-8401(96)00986-8
  9. Denli, M., F. Okan and K. Celik. 2003. Effect of dietary probiotic, organic acid and antibiotic supplementation to diets on broiler performance and carcass yield. Pak. J. Nutr. 2:89-91. https://doi.org/10.3923/pjn.2003.89.91
  10. Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634-643. https://doi.org/10.1093/ps/84.4.634
  11. Duncan, D. B. 1955. Multiple range test and multiple F tests. Biometrics 11:1-42. https://doi.org/10.2307/3001478
  12. Engberg, R. M., M. S. Hedemann, T. D. Leser and B. B. Jensen. 2000. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci. 79:1311-1319. https://doi.org/10.1093/ps/79.9.1311
  13. Ferket, P. R. 2004. Alternatives to antibiotics in poultry production: response, practical experience and recommendations. In: Biotechnology in the Feed and Food Industry (Ed. T. P. Lyons and K. A. Jacques), Proceedings of Alltech’s 20th Annual Symposium, pp: 57-66. Nottingham University Press, UK.
  14. Fushimi, T., K. Tayama, M. Fukaya, K. Kitakoshi, N. Nakai, Y.Tsukamoto and Y. Sato. 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131:1973-1977.
  15. Gauthier, R. 2002. Intestinal health, the key to productivity (The case of organic acids) XXVII Convention ANECA-WPDSA Puerto Vallarta, Jal. Mexico. 30 April 2002.
  16. Gornowicz, E. and K. Dziadek. 2002. The effects of acidifying preparations added to compound feeds on management conditions of broiler chickens. Ann. Anim. Sci. (Suppl. 1):93-96.
  17. Gunal, M., G. Yayli, O. Kaya, N. Karahan and O. Sulak. 2006. The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. Int. J. Poult. Sci. 5(2):149-155. https://doi.org/10.3923/ijps.2006.149.155
  18. Gunes, H., H. Cerit and A. Altinel. 2001. Etlik piliclerin verim ozellikleri uzerine pre-probiotigin (Fermacto-500) etkisi. Ist. Univ. Vet. Fak. Derg. 27:217-229.
  19. Gustafson, R. H. and R. E. Bowen. 1997. Antibiotic use in animal agriculture. J. Appl. Micro. 83:531-541. https://doi.org/10.1046/j.1365-2672.1997.00280.x
  20. Iba, A. M. and A. JR. Berchieri. 1995. Studies on the use of a formic acid propionic acid mixture ($Bio-add^{TM}$) to control experimental Salmonella infection in broiler chickens. Avian Pathol. 24:303-311. https://doi.org/10.1080/03079459508419071
  21. Islam, K. M. S., A. Schuhmacher, H. Aupperle and J. M. Gropp. 2008. Fumaric acid in broiler nutrition: a dose titration study and safety aspects. Int. J. Poult. Sci. 7(9):903-907. https://doi.org/10.3923/ijps.2008.903.907
  22. Jin, L. Z., Y. W. Ho, N. Abdullah, M. A. Ali and S. Jalaluddin.1998. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim. Feed Sci. Technol. 70:197-209. https://doi.org/10.1016/S0377-8401(97)00080-1
  23. Katanbaf, M. N., E. A Dunington and P. B. Siegel. 1989. Restricted feeding in early and late feathering chickens, growth and physiological responses. Poult. Sci. 68:344-351. https://doi.org/10.3382/ps.0680344
  24. Kirchgessner, V. M. and F. X. Roth. 1988. Ergotrope effekte durch organische sauren in der ferkelaufzucht und schweinemast. Ubers. Tierernaehr, 16:93-108.
  25. Lee, M. D. 2005. Molecular basis for AGP effects in animals, p. 37-38. Antimicrobial Growth Promoters: Worldwide Ban on the Horizon. Noordwijk and Zee, the Netherlands, Jan 31-Feb 1.
  26. Mohamed, M. A., H. M. A. Hassan and E. M. A. El-Barkouky. 2008. Effect of mannan oligosaccharide on performance and carcass characteristics of broiler chicks. J. Agric. Soc. Sci. 4:13-17.
  27. Naidu, A. S. 2000. Natural food antimicrobial systems. CRC Press USA. pp. 431-462.
  28. National Research Council (NRC). 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy press, Washington, DC.
  29. Nayak, R. and P. B. Kenney. 2002. Screening of Salmonella isolates from a turkey production facility for antibiotic resistance. Poult. Sci. 81:1496-1500. https://doi.org/10.1093/ps/81.10.1496
  30. Owens, B., L. Tucker, M. A. Collins and K. J. McCracken. 2008.Effects of different feed additives alone or in combination on broiler performance, gut microflora and ileal histology. Br. Poult. Sci. 49(2):202-212. https://doi.org/10.1080/00071660802004890
  31. Ratcliff, J. 2000. Antibiotic bans-a European perspective. Pages: 135-152 in Proceeding of the 47 Maryland Nutrition Conferences for Food the Manufacturers, March 22-24.
  32. Richards, J. D., J. Gong and C. F. M. de Lange. 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations and new technologies for ecological studies. Can. J. Anim. Sci. 85:421-435. https://doi.org/10.4141/A05-049
  33. Ricke, S. C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82:632-639. https://doi.org/10.1093/ps/82.4.632
  34. Runho, R. C., N. K. Sakomura, S. Kuana, D. Banzatto, O. M. Junoqueria and J. H. Stringhini. 1997. Uso do acido organico (acido fumarico) nas racoes de frangos de corte. Revista Brasileira de Zootecnia, 26:1183-1191.
  35. SAS Institute. 1990. $SAS^{\circledR}$/STAT User’s Guide: Statistics, Version 6, 4th edition. SAS Institute Inc, Cary, NC.
  36. Sohail, S. S. and D. A. Roland. 1999. Influence of supplemental phytase on performance of broilers four to six weeks of age. Poult. Sci. 78:550-555. https://doi.org/10.1093/ps/78.4.550
  37. Thompson, J. L. and M. Hinton. 1997. Antibacterial activity of formic and propionic acids in the diet of hens on salmonellas in the crop. Br. Poult. Sci. 38:59-65. https://doi.org/10.1080/00071669708417941
  38. Vlademirova, L. and S. Sourdjiyska. 1996. Test on the effect from adding probiotics to the combined feeds for chicks. J. Anim. Sci. 3:36-39.
  39. Waldroup, P. W., E. O. Oviedo-Rondon and C. A. Fritts. 2003. Comparison of Mos and antibiotic feeding programs in broiler diets containing copper sulfate. Int. J. Poult. Sci. 2:28-31. https://doi.org/10.3923/ijps.2003.28.31
  40. Weinack, O. M., C. F. Smyser and G. H. Soneyenbos. 1979. Evaluation of several methods of detecting salmonella in groups of chickens. Avian Dis. 23:179-193. https://doi.org/10.2307/1589685
  41. Willis, W. L., O. S. Isikuemhen and S. A.Ibrahim. 2007. Performance assessment of broiler chickens given mashroom extract alone or in combination with probiotics. Poult. Sci. 86:1856-1860. https://doi.org/10.1093/ps/86.9.1856
  42. Wolfenden, A. D., J. L. Vicente, J. P. Higgins, R. L. AndreattiFilho, S. E. Higgins, B. M. Hargis and G. Tellez. 2007. Effect of organic acids and probiotics on salmonella enteritidis infection in broiler chickens. Int. J. Poult. Sci. 6:403-405. https://doi.org/10.3923/ijps.2007.403.405
  43. Zhou, Y., Z. Jiang, D. Lv and T. Wang. 2009. Improved energyutilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poult. Sci. 88:316-322. https://doi.org/10.3382/ps.2008-00231
  44. Zou, X. T., X. J. Oiao and Z. R. Xu. 2006. Effect of $\beta$-mannanase (hemicell) on growth performance and immunity of broilers. Poult. Sci. 85:2176-2179. https://doi.org/10.1093/ps/85.12.2176

Cited by

  1. Effect of the commercial product Lumance™, a combination of partly esterified organic acids and plant extracts, on the productive performance of broiler chickens vol.2, pp.2049-257X, 2013, https://doi.org/10.1017/jan.2014.8
  2. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters vol.17, pp.spe, 2015, https://doi.org/10.1590/1516-635XSPECIALISSUENutrition-PoultryFeedingAdditives039-046
  3. The Role of Coated Sodium Butyrate on Performance of Broilers Fed High Protein and Reduced Energy Diets vol.4, pp.2049-257X, 2016, https://doi.org/10.1017/jan.2015.13
  4. Effects of Flavomycin, Bacillus licheniformis and Enramycin on Performance, Nutrient Digestibility, Gut Morphology and the Intestinal Microflora of Broilers vol.53, pp.2, 2016, https://doi.org/10.2141/jpsa.0150077
  5. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens vol.30, pp.5, 2017, https://doi.org/10.5713/ajas.16.0824
  6. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well-being of poultry species pp.09312439, 2017, https://doi.org/10.1111/jpn.12654
  7. Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens vol.102, pp.2, 2018, https://doi.org/10.1111/jpn.12858
  8. Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate pp.1573-5168, 2018, https://doi.org/10.1007/s10695-018-0561-6
  9. Innovative drugs, chemicals, and enzymes within the animal production chain vol.49, pp.1, 2018, https://doi.org/10.1186/s13567-018-0559-1
  10. Effects of Organic Acids Supplement on Performance, Egg Traits, Blood Serum Biochemical Parameters and Gut Microflora in Female Japanese Quail (Coturnix coturnix japonica) vol.20, pp.1, 2018, https://doi.org/10.1590/1806-9061-2016-0375
  11. Effect of Probiotic and Organic Acids in an Attempt to Replace the Antibiotics in Diets of Broiler Chickens Challenged with Eimeria spp. vol.14, pp.11, 2010, https://doi.org/10.3923/ijps.2015.606.614
  12. Recent advances in the role of organic acids in poultry nutrition vol.44, pp.1, 2010, https://doi.org/10.1080/09712119.2015.1079527
  13. Effect of Mixing ACIDAL® with Drinking Water for Laying Hens on Production Performance vol.15, pp.9, 2010, https://doi.org/10.3923/ijps.2016.365.372
  14. Performance And Economic Viability Of Broiler Chickens Fed With Probiotic And Organic Acids In An Attempt To Replace Growth-Promoting Antibiotics vol.21, pp.2, 2010, https://doi.org/10.1590/1806-9061-2018-0912
  15. Ácidos orgánicos, una alternativa en la nutrición avícola: una revisión vol.14, pp.2, 2010, https://doi.org/10.21615/cesmvz.14.2.4
  16. Role of acidifiers in livestock nutrition and health: A review vol.104, pp.2, 2010, https://doi.org/10.1111/jpn.13282
  17. Organic Acids Mixture as a Dietary Additive for Pigs—A Review vol.10, pp.6, 2010, https://doi.org/10.3390/ani10060952
  18. Sodium butyrate as an effective feed additive to improve growth performance and gastrointestinal development in broilers vol.6, pp.3, 2010, https://doi.org/10.1002/vms3.250
  19. The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective vol.9, pp.9, 2010, https://doi.org/10.3390/antibiotics9090594
  20. Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers vol.52, pp.6, 2020, https://doi.org/10.1007/s11250-020-02396-2
  21. Impact of dietary supplemental bile salts on growth performance, carcass, immunity and antioxidant parameters and bacteriology of broiler chicks vol.19, pp.1, 2010, https://doi.org/10.1080/1828051x.2020.1845995
  22. Response to dietary supplementation of mixtures of either selected synbiotic, organic acids or essential oils as growth promoters for growing Japanese quails vol.30, pp.3, 2010, https://doi.org/10.22358/jafs/139324/2021
  23. Supplementation with liquid whey and ACIDAL® ML in drinking water affect gut pH and microflora and productive performance in laying hens vol.62, pp.1, 2021, https://doi.org/10.1080/00071668.2020.1824291
  24. Progress on Gut Health Maintenance and Antibiotic Alternatives in Broiler Chicken Production vol.8, pp.None, 2010, https://doi.org/10.3389/fnut.2021.692839
  25. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae vol.166, pp.2, 2010, https://doi.org/10.1007/s00705-020-04890-2
  26. Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat vol.11, pp.4, 2010, https://doi.org/10.3390/ani11041087
  27. Time for a Paradigm Shift in Animal Nutrition Metabolic Pathway: Dietary Inclusion of Organic Acids on the Production Parameters, Nutrient Digestibility, and Meat Quality Traits of Swine and Broilers vol.11, pp.6, 2010, https://doi.org/10.3390/life11060476
  28. Potential role of important nutraceuticals in poultry performance and health - A comprehensive review vol.137, pp.None, 2010, https://doi.org/10.1016/j.rvsc.2021.04.009
  29. Feeding Malic Acid to Chickens at Slaughter Age Improves Microbial Safety with Regard to Campylobacter vol.11, pp.7, 2021, https://doi.org/10.3390/ani11071999
  30. Comparative analysis of chicken cecal microbial diversity and taxonomic composition in response to dietary variation using 16S rRNA amplicon sequencing vol.48, pp.11, 2010, https://doi.org/10.1007/s11033-021-06712-3