DOI QR코드

DOI QR Code

Estimation of Lipoprotein-lipase Activity (LPL) and Other Biochemical Changes in Two Breeds of Overfeeding Geese

  • Xu, Hengyong (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Wang, Yan (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Han, Chunchun (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Jiang, Li (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Zhuo, Weihua (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Ye, Jianqiang (College of Animal Science and Technology, Sichuan Agricultural University) ;
  • Wang, Jiwen (College of Animal Science and Technology, Sichuan Agricultural University)
  • Received : 2010.01.08
  • Accepted : 2010.04.27
  • Published : 2010.09.01

Abstract

This study aimed to examine the effect of overfeeding on biochemical parameters and lipoprotein-lipase (LPL) mRNA expression in different tissues associated with hepatic lipogenesis in Sichuan white and Landes geese. Fifty healthy male Sichuan white geese and fifty male Landes geese (Cygnus atratus) were hatched on the same day under the same feeding conditions and were selected as experimental animals. After overfeeding for 14 days (from 14 weeks to 16 weeks) and then slaughtering, the biochemical changes of hepatic lipogenesis were evaluated. Results showed that i) in Landes geese, the plasma concentration of glucose was higher (p<0.001), while plasma concentrations of insulin and VLDL were both lower (p<0.01); ii) the LPL mRNA level in pectoralis muscle and leg muscle of the overfed groups in both breeds was higher (p<0.05) than in the control groups; iii) in Sichuan white geese, the proportion of fatty liver weight was positively correlated with plasma triacylglycerols (TG)(p<0.05) and VLDL concentrations (p<0.05), while these correlations were not significant in Landes geese; and iv) the activity of LPL had significant positive correlation with the proportions of lipids in subcutaneous adipose tissue and abdominal adipose tissue in Sichuan white geese, while in Landes geese the correlation was negative (p<0.05) with proportions of lipids in the liver, LPL activity had a significant positive correlation with the proportions of lipids in subcutaneous adipose tissue. These results suggest that the Landes geese have a better ability to use the massive amount of ingested food and to store lipids preferentially in the liver, but the Sichuan white geese have a relatively lower ability to use energetic nutrients and lipid storage is more efficient in the adipose tissues.

Keywords

References

  1. Albalat, A., A. Saera-Vila, E. Capilla, J. Gutierrez, J. Perez- Sanchez and I. Navarro. 2007. Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comp. Biochem. Physiol. PartB. 148:151-159. https://doi.org/10.1016/j.cbpb.2007.05.004
  2. Auwerx, J., P. Leroy and K. Schoonjans. 1992. Lipoprotein lipase: recent contributions from molecular biology. Crit. Rev. Clin. Lab. Sci. 29:243-268. https://doi.org/10.3109/10408369209114602
  3. Berradi, H., G. Guy and N. Rideau. 2004. A glucokinase-like enzyme induced in mule duck livers by overfeeding. Poult. Sci. 83:161-168. https://doi.org/10.1093/ps/83.2.161
  4. Benson, J. D., V. Hearn, T. Boyd and A. Bensadoun. 1975. Triglyceride hydrolase of chicken and rat pre- and post-heparin plasma. Effects of fasting and comparison with adipose tissue lipoprotein lipase. Int. J. Biochem. 6:727-734. https://doi.org/10.1016/0020-711X(75)90124-X
  5. Cryer, A. 1981. Tissue lipoprotein-lipase activity and its action in lipoprotein metabolism. Int. J. Biochem. 13:524-541.
  6. Camps, L., M. Reina, M. Llobera, S. Vilaró and T. Olivecrona. 1990. Lipoprotein lipase: cellular origin and functional distribution. Am. J. Phys. 258:C673-681.
  7. Chen, Z. Y. 1999. Handbook of clinic biochemistry and biochemistry experiment analysis. Beijing: Chinese Medicine Press. (in Chinese).
  8. Davail, S., G. Guy, J. M. Andre, D. Hermier and R. Hoo-Paris. 2000. Metabolism in two breeds of geese with moderate or large overfeeding induced liversteatosis. Comp. Biochem. Physiol. Part A. 126:91-99.
  9. Davail, S., N. Rideau, G. Guy, J. M. André and R. Hoo-Paris. 2003a. Pancreatic hormonal and metabolic responses in overfed ducks. Horm. Metab. Res. 35:439-443. https://doi.org/10.1055/s-2003-41626
  10. Davail, S., N. Rideau, G. Guy, J. M. Andre, D. Hermier and R. Hoo-Paris. 2003b. Hormonal and metabolic responses to overfeeding in three genotypes of ducks. Comp. Bioche. Physiol. Part A. 134:707-715. https://doi.org/10.1016/S1095-6433(02)00365-3
  11. Fossati, P. and L. Prencipe. 1982. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxyde. Clin. Chem. 28:2077-2080.
  12. Fournier, E., R. Peresson, G. Guy and D. Hermier. 1997. Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poult. Sci. 76:599-607. https://doi.org/10.1093/ps/76.4.599
  13. Guy, G., D. Hermier, S. Davail, M. Bely, J. M. Andre and R. Hoo-Paris. 1999. Meat production and force feeding ability of different types of ducks. 1st World Waterfowl Conference, Taichung (Taiwan). 1-4:462-468.
  14. Griffin, H. D., S. C. Butterwith and C. Goddard. 1987. Contribution of lipoprotein lipase to differences in fatness between broiler and layer-strain chickens. Br. Poult. Sci. 28:197-206. https://doi.org/10.1080/00071668708416953
  15. Havel, R. J., H. A. Eder and J. H. Bragdon. 1955. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34:1345-1353. https://doi.org/10.1172/JCI103182
  16. Hazelwood, R. L. 1984. Pancreatic hormones, insulin/glucagon molar ratios, and somatostatin as determinants of avian carbohydrate metabolism. J. Exp. Zool. 232(3):647-652. https://doi.org/10.1002/jez.1402320333
  17. Hermier, D., A. Saadoun, M. R. Salichon, N. Sellier, D. Rousselot-Pailley and M. J. Chapman. 1991. Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis: Changes induced by development and force-feeding. Lipids 26:331-339. https://doi.org/10.1007/BF02537194
  18. Hermier, D. 1997. Lipoprotein metabolism and fattening in poultry. J. Nutr. 127:805S-808S.
  19. Hermier, D., M. R. Salichon, G. Guy and R. Peresson. 1999. Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in the goose. Poult. Sci. 78:1398-1406. https://doi.org/10.1093/ps/78.10.1398
  20. Hermier, D., G. Guy, S. Guillaumin, S. Davail, J. M. Andre and R. Hoo-Paris. 2003. Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in two species of ducks. Comp. Biochem. Physiol. Part B. 135:663-675. https://doi.org/10.1016/S1096-4959(03)00146-5
  21. Hoenig, M., J. B. McGoldrick, M. deBeer, P. N. M. Demacker and D. C. Ferguson. 2006. Activity and tissue-specific expression of lipases and tumor-necrosis factor a in lean and obese cats. Domest. Anim. Endocrinol. 30: 333-344. https://doi.org/10.1016/j.domaniend.2005.09.001
  22. Kadish, A. H., R. L. Little and J. C. Sternberg. 1968. A new rapid method for the determination of glucose by measurement or rate of oxygen consumption. Clin. Chem. 14:116-131.
  23. Liu, X. Y., R. G. He, C. S. Huang, X. Li, Q. A. Zhou, C. Wang, N. Zhao and S. X. Zhou. 2006. Hepatic lipogenesis associated with biochemical changes in overfed Landaise geese and china xupu geese. Agric. Sci. (in China). 5(5):390-396. https://doi.org/10.1016/S1671-2927(06)60066-7
  24. Leclercq, B., D. Hermier and M. R. Salichon. 1984. Effects of age and diet on plasma lipid and glucose concentrations in genetically lean or fat chickens. Reprod. Nutr. Dev. 24(1):53-61. https://doi.org/10.1051/rnd:19840106
  25. Mourot, J., G. Guy, S. Lagarrigue, P. Peiniau and D. Hermier. 2000. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser). Comp. Biochem. Physiol. Part B. 126:81-87.
  26. Mulder, M., P. Lombardi, H. Jansen, T. J. Van Berkel, R. R. Frants and L. M. Havekes. 1993. Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase. J. Biol. Chem. 268:9369-9375
  27. Pedersen, M. E., M. Cohen and M. C. Schotz. 1983. Immunocytochemical localization of the functional fraction of lipoprotein lipase in the perfused heart. J. Lipid. Res. 24:512-521.
  28. Poujardieu, B., R. Rouvier, D. Rousselot-Pailley, G. Guy, A. Rosinski and S. Wezyk. 1994. Croissance et aptitude au gavage de 3 ge´notypes d'oies. Ann. Zootech. 43:197-211. https://doi.org/10.1051/animres:19940209
  29. Pilo, B. and J. C. George. 1983. Diurnal and seasonal variations in liver glycogen and fat in relation to metabolic status of liver and m. pectoralis in the migratory starling, Sturnus roseus, wintering in India. Comp. Biochem. Physiol. Part A. 74:601-604. https://doi.org/10.1016/0300-9629(83)90554-6
  30. Reids, I. M. and C. J. Roberts. 1983. Subclinical fatty liver in dairycows. Irish. Vet. J. 37:104-110.
  31. Ruffier, L., J. Simon and N. Rideau. 1998. Isolation of functional glucagon islets of Langerhans from the chicken pancreas. Gen. Comp. Endocrinol. 12:153-162.
  32. Saadoun, A. and B. Leclercq. 1987. In vivo lipogenesis of genetically lean and fat chickens: effects of nutritional state and dietary treatment. J. Nutr. 117:428-435.
  33. Sato, K., Y. Akiba, S. Kimura and M. Horiguchi. 1995. Species differences between chicks and rats in inhibition of lipoprotein hydrolysis by Triton WR-1339. Comp. Biochem. Physiol. Part C. 122:315-319.
  34. Sato, K., Y. Akiba and M. Horiguchi. 1997. Species difference between chickens and rats in chemical properties of adipose tissue lipoprotein lipase. Comp. Biochem. Physiol. Part A. 118:855-858. https://doi.org/10.1016/S0300-9629(97)00218-1
  35. Sato, K., Y. Akiba, Y. Chida and K. Takahashi. 1999. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poult. Sci. 78:1286-1291. https://doi.org/10.1093/ps/78.9.1286
  36. Whitehead, C. C. and H. Griffin. 1982. Plasma lipoprotein concentration as an indicator of fatness in broilers: effect of age and diet. Br. Poult. Sci. 23:299-305. https://doi.org/10.1080/00071688208447961
  37. Yasuhara, M., T. Ohama, N. Matsuki, H. Saito, J. Shiga, K. Inoue, K. Kurokawa and T. Teramoto. 1991. Induction of fatty liver by fasting in suncus. J. Lipid. Res. 32:887-891.

Cited by

  1. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0652-y
  2. CHANGE OF THE MTOR PATHWAY IN TISSUES OF OVERFED GEESE vol.17, pp.3, 2015, https://doi.org/10.1590/1516-635x1703293-300
  3. Lipoprotein metabolism in poultry vol.67, pp.3, 2010, https://doi.org/10.1017/s0043933911000481
  4. Molecular cloning, characterisation, and expression analysis of adipocyte fatty acid binding protein gene in Xupu goose (Anser cygnoides domesticus) vol.60, pp.6, 2019, https://doi.org/10.1080/00071668.2019.1655709
  5. Comparison of overfed Xupu and Landes geese in performance, fatty acid composition, enzymes and gene expression related to lipid metabolism vol.33, pp.12, 2010, https://doi.org/10.5713/ajas.19.0842
  6. Research progress into the physiological changes in metabolic pathways in waterfowl with hepatic steatosis vol.62, pp.1, 2010, https://doi.org/10.1080/00071668.2020.1812527