DOI QR코드

DOI QR Code

Effect of Myostatin (MSTN) g+6223G>A on Production and Carcass Traits in New Zealand Romney Sheep

  • Han, J. (Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University) ;
  • Zhou, H. (Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University) ;
  • Forrest, R.H. (Eastern Institute of Technology) ;
  • Sedcole, J.R. (Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University) ;
  • Frampton, C.M. (Christchurch School of Medicine and Health Sciences, University of Otago) ;
  • Hickford, J.G.H. (Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University)
  • Received : 2009.07.21
  • Accepted : 2009.10.09
  • Published : 2010.07.01

Abstract

Myostatin, which is also known as growth and differentiation factor 8 (GDF8), has been reported to act as a negative regulator of skeletal muscle development. Variation in the myostatin gene (MSTN) has been associated with variation in muscularity in certain "meaty" sheep breeds. Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCR-SSCP) analysis was used to investigate allelic variation in the previously described g+6223G>A single-nucleotide polymorphism (SNP) in the 3' untranslated region (3' UTR) of MSTN. The sheep studied were 79 New Zealand (NZ) Romney lambs derived from a single sire heterozyous for g+6223G>A, which is in itself notable as this polymorphism has not been described previously in this breed. Allelic variation was observed to be associated with an abnormal gender ratio (p = 0.046) in the progeny. The presence of allele A was observed to have an effect (p<0.05) on birth weight, mean loin yield, proportion yield loin and total muscle yield. Allelic variation did not significantly affect mean shoulder yield, leg yield, proportion yield shoulder and proportion yield leg. This preliminary result suggests that while the A allele at MSTN g+6223 appears to improve some valuable traits in NZ Romney sheep, further research is required to understand if and how it may affect other traits.

Keywords

References

  1. Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier and M. Georges. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818. https://doi.org/10.1038/ng1810
  2. Hadjipavlou, G., O. Matika, A. Clop and S. C. Bishop. 2008. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet. 39:346-353. https://doi.org/10.1111/j.1365-2052.2008.01734.x
  3. Ji, S., R. L. Losinski, S. G. Cornelius, G. R. Frank, G. M. Willis, D. E. Gerrard, F. F. S. Depreux and M. E. Spurlock. 1998. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275:1265-1273.
  4. Johnson, P. L., K. G. Dodds, W. E. Bain, G. J. Greer, N. J. McLean, R. J. McLaren, S. M. Galloway, T. C. van Stijn and J. C. McEwan. 2009. Investigations into the GDF8 g+6273 G-A polymorphism in New Zealand Texel sheep. J. Anim. Sci. 87:1856-1864. https://doi.org/10.2527/jas.2008-1508
  5. Kambadur, R., M. Sharma, T. P. Smith and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916.
  6. Kijas, J. W., R. McCulloch, J. E. Edwards, V. H. Oddy, S. H. Lee and J. van der Werf. 2007. Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 Locus. BMC Genet. 8:80-90.
  7. Kocamis, H., D. C. Kirkpatrick-Keller, J. Richter and J. Killefer. 1999. The ontogeny of myostatin, follistatin and activin-B mRNA expression during chicken embryonic development. Growth Dev. Aging. 63:143-150.
  8. Lee, S. J. and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA. 98:9306-9311. https://doi.org/10.1073/pnas.151270098
  9. McPherron, A. C. and S. J. Lee. 2002. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest. 109:595-601. https://doi.org/10.1172/JCI0213562
  10. McPherron, A. C., A. M. Lawler and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-$\beta$ superfamily member. Nature 387:83-90. https://doi.org/10.1038/387083a0
  11. Meat and Wool New Zealand. 2008. Compendium of New Zealand Farm Production Statistics 32 Edition. Publication No. P07020. Wellington, Meat and Wool New Zealand. ISSN1176-824X.
  12. Mendias, C. L., K. I. Bakhurin and J. A. Faulkner. 2008. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl. Acad. Sci. USA. 105:388-393. https://doi.org/10.1073/pnas.0707069105
  13. Mitchell, M. D., C. C. Osepchook, K. C. Leung, C. D. McMahon and J. J. Bass. 2006. Myostatin is a human placental product that regulates glucose uptake. J. Clin. Endocrinol. Metab. 91:1434-1437. https://doi.org/10.1210/jc.2005-2361
  14. Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker and E. A. Ostrander. 2007. A mutation in the myostatin gene increase muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:779-786.
  15. Reisz-Porszasz, S., S. Bhasin, J. N. Artaza, R. Q. Shen, I. Sinha-Hikim, A. Hogue, T. J. Fielder and N. F. Gonzalez-Cadavid. 2003. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am. J. Physiol. Endocrinol. Metab. 285:E876-E888.
  16. Schuelke, M., K. R. Wagner, L. E. Stolz, C. Hubner, T. Riebel, W. Komen, T. Braun, J. F. Tobin and S. J. Lee. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350:2682-2688. https://doi.org/10.1056/NEJMoa040933
  17. Sharma, M., R. Kambadur, K. G. Matthews, W. G. Somers, G. P. Devlin, J. V. Conaglen, P. J. Fowke and J. J. Bass. 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell Physiol. 180:1-9. https://doi.org/10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V
  18. Stinckens, A., T. Luyten, J. Bijttebier, K. Van den Maagdenberg, D. Dieltiens, S. Janssens, S. De Smet, M. Georges and N. Buys. 2008. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 39:586-596. https://doi.org/10.1111/j.1365-2052.2008.01774.x
  19. Zhou, H., J. G. Hickford and Q. Fang. 2006. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Anal. Biochem. 354:159-161. https://doi.org/10.1016/j.ab.2006.03.042

Cited by

  1. Genetic variations in the myostatin gene (MSTN) in New Zealand sheep breeds vol.40, pp.11, 2013, https://doi.org/10.1007/s11033-013-2752-7
  2. Effect of variation in ovine WFIKKN2 on growth traits appears to be gender-dependent vol.5, pp.1, 2015, https://doi.org/10.1038/srep12347
  3. Effects of Intronic SNPs in the Myostatin Gene on Growth and Carcass Traits in Colored Polish Merino Sheep vol.11, pp.1, 2010, https://doi.org/10.3390/genes11010002