The Optimal Method to Determine Damage Threshold of Rock using Hwangdeung Granite

황등화강암을 이용한 암석의 손상기준 결정방법 연구

  • Jang, Bo-An (Department of Geophysics, Kangwon National University) ;
  • Ji, Hoon (Department of Geophysics, Kangwon National University) ;
  • Jang, Hyun-Shic (Department of Geophysics, Kangwon National University)
  • 장보안 (강원대학교 지구물리학과) ;
  • 지훈 (강원대학교 지구물리학과) ;
  • 장현식 (강원대학교 지구물리학과)
  • Received : 2010.02.24
  • Accepted : 2010.03.25
  • Published : 2010.03.31

Abstract

Although various methods for determination of damage threshold in rock have been suggested, clear damage thresholds were determined by some methods, but different thresholds were measured by other methods. We determined the damage thresholds in Hangdeung granite using all the methods suggested, and investigated the best methods, applicability and errors of each method. The crack initiation threshold and the crack damage threshold which are important in investigation of characteristics of crack development and failure were verified by field strength ratio method and long-term constant load test. The crack closure stress and the crack initiation stress were 57.5 MPa and 77.6 MPa, and the most exact values were yielded by crack volumetric strain. The secondary crack initiation stress was 90.6 MPa and AE event count and AE event count rate were the effective methods. The volumetric stiffness, AE event count and AE event count rate were the most effective methods for determination of crack coalescence threshold and crack coalescence stress was 110.3 MPa. The crack damage stress was 127.5 MPa and was measured correctly by volumetric stiffness and AE event count rate. The ratio between crack initiation stress and uniaxial compressive strength was 0.47 which was very similar with the FSR value of 0.46. The ratio between crack damage stress and uniaxial compressive strength was almost the same as the ratio between long-term strength and uniaxial compressive strength, indicating that the crack initiation stress and the crack damage stress measured were correct.

암석의 손상상태를 평가하기위한 여러 방법들이 제안되어 있으나, 일부의 방법은 명확한 손상기준을 제시하기도 하지만 일부의 방법은 매우 모호하여 분석자의 주관에 따라 값이 달라지기도 한다. 그러므로 이 연구에서는 황등화강암을 대상으로 현재까지 제안된 모든 손상기준 결정방법을 적용하여, 각 방법의 적용성, 오차 및 최적의 손상기준결정 방법 등을 연구하였다. 또한 암석의 균열발달 및 파괴특성의 규명에 가장 중요한 손상기준인 균열개시응력과 균열손상응력을 FSR 및 장기 정하중 시험을 이용하여 검정하였다. 황등화강암의 균열닫힘응력과 균열개시응력은 각각 57.5 MPa, 77.6 MPa이며 균열체적변형률에서 측정하는 것이 가장 정확한 것으로 판단된다. 2차 균열개시응력은 90.6 MPa로 측정되었으며, 미소파괴음 계수 및 계수율이 균열개시응력의 측정에 가장 효과적인 것으로 판단된다. 균열결합응력 측정은 체적강성곡선, 미소파괴음 계수 및 미소파괴음 계수율이 가장 효과적인 방법으로 판단되며, 균열결합응력은 110.3 MPa이다. 균열손상응력은 체적강성곡선 및 미소파괴음 계수율에서 가장 명확히 측정되며, 약 127.5 MPa이다. 일축압축강도에 대한 비로서 나타낸 균열개시응력은 0.47로 FSR 값 0.46과 매우 유사하며, 균열손상응력은 0.77로 장기 정하중 시험을 통하여 측정된 장기 강도비 0.75~0.8과 거의 일치하여 균열개시응력 및 균열손상응력 값이 정확함을 검정하였다.

Keywords

References

  1. 장수호와 이정인, 2005, 응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구, 대한화약발파공학회, 23, 31-44.
  2. Bieniawski, Z.T., 1967, Mechanism of brittle fracture of rock, Int. J. Rock Mech. Min. Sci., 4, 407-423. https://doi.org/10.1016/0148-9062(67)90031-9
  3. Brace, W.F., Paulding, B.W., Jr. and Scholz, C., 1966, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71, 3939-3953. https://doi.org/10.1029/JZ071i016p03939
  4. Cai, M., Kaiser, P.K., Tasaka, Y., Maejima, T., Morioka, H. and Minami, M., 2004, Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations, Int. J. Rock Mech. Min. Sci., 41, 833-847.
  5. Diederichs, M.S., Kaiser, P.K. and Eberhardt, E., 2004, Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation, Int. J. Rock Mech. Min. Sci., 41, 785-812. https://doi.org/10.1016/j.ijrmms.2004.02.003
  6. Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S., 1997, Change in acoustic event properties with progressive fracture damage, Int. J. Rock Mech. Min. Sci., 34, 633. https://doi.org/10.1016/S1365-1609(97)00284-0
  7. Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S., 1998, Identifying crack initiation and propagation thresholds in brittle rock, Can. Geotech. J., 35, 222-233. https://doi.org/10.1139/t97-091
  8. Eberhardt, E., Stead, D. and Stimpson, B., 1999a, Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures, Rock Mech. Rock Eng., 32, 81-99. https://doi.org/10.1007/s006030050026
  9. Eberhardt, E., Stead, D. and Stimpson, B., 1999b, Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression, Int. J. Rock Mech. Min. Sci., 36, 361-380. https://doi.org/10.1016/S0148-9062(99)00019-4
  10. Hardy, H. R., 1977, Emergence of acoustic emission/microseismic activity as a tool in geomechanics, Proc. 1st Conf. on Acoustic Emission/Microseismic Activity in Geol. Struc. and Mat., The Pennsylvania University, Trans Tech Publication, 13-31.
  11. Martin, C.D. and Chandler, N.D., 1994, The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 31, 643-659. https://doi.org/10.1016/0148-9062(94)90005-1
  12. Ranjith, P.G., Jasinge, D., Song, J.Y. and Choi, S.K., 2007, A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: Use of acoustic emission, Mech. of Materials, 40, 453-469.