DOI QR코드

DOI QR Code

Identification and Characterization of a Pantothenate Kinase (PanK-sp) from Streptomyces peucetius ATCC 27952

  • Mandakh, Ariungerel (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Niraula, Narayan Prasad (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Kim, Eung-Pil (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
  • Received : 2010.07.30
  • Accepted : 2010.09.01
  • Published : 2010.12.28

Abstract

Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Here, we report the identification, cloning, and characterization of panK-sp from Streptomyces peucetius ATCC 27952. The gene encoded a protein of 332 amino acids with a calculated molecular mass of 36.8 kDa and high homology with PanK from S. avermitilis and S. coelicolor A3(2). To elucidate the putative function of PanK-sp, it was cloned into pET32a(+) to construct pPKSP32, and the PanK-sp was then expressed in E. coli BL21(DE3) as a His-tag fusion protein and purified by immobilized metal affinity chromatography. The enzyme assay of PanK-sp was carried out as a coupling assay. The gradual decrease in NADH concentration with time clearly indicated the phosphorylating activity of PanK-sp. Furthermore, the ca. 1.4-fold increase of DXR and the ca. 1.5-fold increase of actinorhodin by in vivo overexpression of panK-sp, constructed in pIBR25 under the control of a strong $ermE^*$ promoter, established its positive role in secondary metabolite production from S. peucetius and S. coelicolor, respectively.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myss, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
  2. Begley, T. P., C. Kinsland, and E. Strauss. 2001. The biosynthesis of coenzyme A in bacteria. Vitam. Horm. 61: 157-171. https://doi.org/10.1016/S0083-6729(01)61005-7
  3. Bird, A. E., J. M. Bellis, and B. C. Gasson. 1982. Spectrophotometric assay of clavulanic acid by reaction with imidazole. Analyst 107: 1241-1245. https://doi.org/10.1039/an9820701241
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brand, L. A. and E. Strauss. 2005. Characterization of a new pantothenate kinase isoform from Helicobacter pylori. J. Biol. Chem. 280: 20185-20188. https://doi.org/10.1074/jbc.C500044200
  6. Calder, R. B., R. S. B. Williams, G. Ramaswamy, C. O. Rock, E. Campbell, S. E. Unkles, J. R. Kinghorn, and S. Jackowski. 1999. Cloning and characterization of a eukaryotic pantothenate kinase gene (panK) from Aspergillus nidulans. J. Biol. Chem. 274: 2014-2020. https://doi.org/10.1074/jbc.274.4.2014
  7. Chin, D. T., S. A. Goff, T. Webstern, T. Smith, and A. L. Goldberg. 1988. Sequence of the lon gene in Escherichia coli. J. Biol. Chem. 263: 11718-11728.
  8. Choudhry, A. E., T. L. Mandichak, J. P. Broskey, R. W. Egolf, C. Kinsland, T. P. Begley, et al. 2003. Inhibitors of pantothenate kinase: Novel antibiotics for staphylococcal infections. Antimicrob. Agents Chemother. 47: 2051-2055. https://doi.org/10.1128/AAC.47.6.2051-2055.2003
  9. Ebina, Y., E. Araki, M. Taira, F. Shimada, M. Mori, C. S. Craik, et al. 1987. Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulinand antibody-stimulated glucose uptake and receptor kinase activity. Proc. Natl. Acad. Sci. USA 84: 704-708. https://doi.org/10.1073/pnas.84.3.704
  10. Hong, B. S., G. Senisterra, W. M. Rabeh, M. Vedadi, R. Leonardi, Y. M. Zhang, C. O. Rock, S. Jackowski, and H.-W. Park. 2007. Crystal structures of human pantothenate kinases. J. Biol. Chem. 282: 27984-27993. https://doi.org/10.1074/jbc.M701915200
  11. Hong, B. S., M. K. Yun, Y. M. Zhang, S. Chohnan, C. O. Rock, S. W. White, S. Jackowski, H. W. Park, and R. Leonardi. 2006. Prokaryotic type II and type III pantothenate kinases: The same monomer fold creates dimers with distinct catalytic properties. Structure 14: 1251-1261. https://doi.org/10.1016/j.str.2006.06.008
  12. Jackowski, S. and C. O. Rock. 1981. Regulation of coenzyme A biosynthesis. J. Bacteriol. 148: 926-932.
  13. Jnawali, H. N., H. C. Lee, and J. K. Sohng. 2010. Enhancement of clavulanic acid production by expressing regulatory genes in gap gene deletion mutant of Streptomyces clavuligerus NRRL3585. J. Microbiol. Biotechnol. 20: 146-152.
  14. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich.
  15. Kleinkauf, H. 2000. The role of 4'-phosphopantetheine in the biosynthesis of fatty acids, polyketides and peptides. Biofactors 11: 91-92. https://doi.org/10.1002/biof.5520110126
  16. Kupke, T. 2002. Molecular characterization of the 4-phosphopantothenoylcysteine synthetase domain of bacterial Dfp flavoproteins. J. Biol. Chem. 277: 36137-36145. https://doi.org/10.1074/jbc.M206188200
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Leonardi, R., S. Chohnan, Y. M. Zhang, K. G. Virga, R. E. Lee, C. O. Rock, and S. Jackowski. 2005. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J. Biol. Chem. 280: 3314-3322.
  19. Li, R. and C. A. Townsend. 2006. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab. Eng. 8: 240-252. https://doi.org/10.1016/j.ymben.2006.01.003
  20. Malla, S., N. P. Niraula, B. Singh, K. Liou, and J. K. Sohng. 2010. Biosynthesis of doxorubicin and limitations in its production from Streptomyces peucetius ATCC 27952. Microbiol. Res. 165: 427-435. https://doi.org/10.1016/j.micres.2009.11.006
  21. Malla, S., N. P. Niraula, K. Liou, and J. K. Sonhg. 2009. Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J. Biosci. Bioeng. 108: 92-98. https://doi.org/10.1016/j.jbiosc.2009.03.002
  22. Nicely, N. I., D. Parsonage, C. Paige, G. L. Newton, R. C. Fahey, R. Leonardi, S. Jackowski, T. C. Mallett, and A. Claiborne. 2007. Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: Implications for coenzyme A-dependent redox biology. Biochemistry 46: 3234-3245. https://doi.org/10.1021/bi062299p
  23. Olzhausen, J., S. Schubbe, and H. J. Schuller. 2009. Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: Identification of a conditional mutation in the pantothenate kinase gene CAB1. Curr. Genet. 55: 163-173. https://doi.org/10.1007/s00294-009-0234-1
  24. Pfeifer, B. A., J. S. Admiraal, H. Gramajo, D. E. Cane, and C. Khosla. 2001. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291: 1790-1792. https://doi.org/10.1126/science.1058092
  25. Robinshaw, J. D. and J. R. Neely. 1985. Coenzyme A metabolism. Am. J. Physiol. Endocrinol. Metab. 248: El-E9.
  26. Rock, C. O., M. A. Karim, Y. M. Zhang, and S. Jackowski. 2002. The murine pantothenate kinase (pank1) gene encodes two differentially regulated pantothenate kinase isozymes. Gene 291: 35-43. https://doi.org/10.1016/S0378-1119(02)00564-4
  27. Romero, J., P. Liras, and J. F. Martin. 1984. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 20: 318-325. https://doi.org/10.1007/BF00270593
  28. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning, A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  29. Snyder, M. A., J. M. Bishop, J. P. McGrath, and A. D. Levinson. 1985. A mutation at the ATP-binding site of $pp6O^{v-src}$ abolishes kinase activity, transformation, and tumorigenicity. Mol. Cell. Biol. 5: 1772-1779.
  30. Song, W. J. and S. Jackowski. 1992. Cloning, sequencing, and expression of the pantothenate kinase (coaA) gene of Escherichia coli. J. Bacteriol. 174: 6411-6417.
  31. Song, W. J. and S. Jackowski. 1994. Kinetics and regulation of pantothenate kinase from Escherichia coli. J. Biol. Chem. 269: 27051-27058.
  32. Sthapit, B., T. J. Oh, R. Lamichhance, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
  33. Takagi, M., H. Tamaki, Y. Miyamoto, R. Leonardi, S. Hanada, S. Jackowski, and S. Chohnan. 2010. Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 192: 233-241. https://doi.org/10.1128/JB.01021-09
  34. Vadali, R.V., G. N. Bennettb, and K. Y. San. 2004. Cofactor engineering of intracelluar CoA/acetyl-CoA and its effect on metabolic flux redistribution in E. coli. Metab. Eng. 6: 133-139. https://doi.org/10.1016/j.ymben.2004.02.001
  35. Vallari, D. S., S. Jackowski, and C. O. Rock. 1987. Regulation of pantothenate kinase by coenzyme A and its thioesters. J. Biol. Chem. 262: 2468-2471.
  36. Zhang, Y. M., C. O. Rock, and S. Jackowski. 2005. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J. Biol. Chem. 280: 32594-32601. https://doi.org/10.1074/jbc.M506275200

Cited by

  1. Characterization of Dephosphocoenzyme A Kinase from Streptomyces peucetius ATCC27952, and Its Application for Doxorubicin Overproduction vol.24, pp.9, 2010, https://doi.org/10.4014/jmb.1404.04053
  2. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
  3. Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces vol.69, pp.None, 2010, https://doi.org/10.1016/j.copbio.2020.11.006
  4. Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes vol.67, pp.None, 2010, https://doi.org/10.1016/j.ymben.2021.06.003