DOI QR코드

DOI QR Code

${\alpha}$-Galactosidase from Bacillus megaterium VHM1 and Its Application in Removal of Flatulence-Causing Factors from Soymilk

  • Patil, Aravind Goud G. (Department of Biochemistry, Gulbarga University) ;
  • Kumar S.K., Praveen (Department of Biochemistry, Gulbarga University) ;
  • Mulimani, Veerappa H. (Department of Biochemistry, Gulbarga University) ;
  • Veeranagouda, Yaligara (Department of Microbiology, Changwon National University) ;
  • Lee, Kyoung (Department of Microbiology, Changwon National University)
  • Received : 2009.12.06
  • Accepted : 2010.08.09
  • Published : 2010.11.28

Abstract

A bacterial strain capable of producing extracellular ${\alpha}$-galactosidase was isolated from a sample of sugarcane industrial waste. Microbiological, physiological, and biochemical studies revealed that the isolate belonged to Bacillus sp. Furthermore, based on a 16S rDNA sequence analysis, the new isolate was identified as Bacillus megaterium VHM1. The production of ${\alpha}$-galactosidase was optimized based on various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen sources, respectively. The optimum pH was 7.5 and the enzyme remained stable over a pH range of 5-9. The enzyme was optimally active at $55^{\circ}C$ and thermostable with a half-life of 120 min, yet lost 90% of its residual activity within 120 min at $60^{\circ}C$. One mM concentrations of $Ag^2$, $Cu^2$, and $Hg^{2+}$ strongly inhibited the ${\alpha}$-galactosidase, whereas the metal ions $Fe^2$, $Mn^{2+}$, and $Mg^{2+}$ had no effect on the ${\alpha}$-galactosidase activity, and $Zn^{2+}$, $Ni^{2+}$, and $Ca^{2+}$ reduced the enzyme activity slightly. When treated with the B. megaterium VHM1 enzyme, the flatulence-causing sugars in soymilk were completely hydrolyzed within 1.5 h.

Keywords

References

  1. Admark, P., F. Larson, F. Tgerneld, and H. Stalbran. 2001. Multiple $\alpha$ -galactosidases from Aspergillus niger: Purification, characterization and substrate specificities. Enzyme Microbiol. Technol. 29: 441-448. https://doi.org/10.1016/S0141-0229(01)00415-X
  2. Akiba, T. and K. Horikoshi. 1976. Properties of $\alpha$-galactosidase of alkalophilic bacteria. Agric. Biol. Chem. 40: 1851-1855. https://doi.org/10.1271/bbb1961.40.1851
  3. Aravind Goud, G. P. and V. H. Mulimani. 2008. Removal of flatulence-inducing sugars by using free and polyvinyl alcohol immobilized $\alpha$-galactosidase from Aspergillus oryzae. Biotechnol. Bioprocess Eng. 13: 354-359. https://doi.org/10.1007/s12257-008-0024-5
  4. Biranjan, J. R., D, Ingole, and S. R. Sonyl. 1987. Utility of soymilk in dietary therapy of undernourished children. Ind. Med. Gazzette 9: 313-316.
  5. Claus, D. and R. C. W. Berkley. 1986. Genus Bacillus, 1104- 1139. In H. A., N. S. Sneath Mair, and M. E. Shrape (eds.). Bergey's Manual of Systematic Bacteriology. Williams and Williams, Baltimore.
  6. Delenete, J., J. H. Jhonson, M. J. Kuo, R. S. O'Connors, and L. E. Weeks. 1974. Production of new thermostable neutral$\alpha$- galactosidase from Bacillus stearothermophillus. Biotechnol. Bioeng. 16: 1227-1243. https://doi.org/10.1002/bit.260160907
  7. Dey, P. M. and J. B. Pridham. 1972. Biochemistry of$\alpha$- galactosidase. Adv. Enzymol. 36: 911-930.
  8. Fuller, M., M. Lovejoy, D. A. Brooks, M. L. Harkin, J. J. Hopwood, and P. J. Mickle. 2004. Immunoquantification of $\alpha$- galactosidase evaluation for the diagnosis of Fabray's disease. Clin. Chem. 50: 1979-1985. https://doi.org/10.1373/clinchem.2004.037937
  9. Garro, M. S., G. F. deValtz, G. Oliver, and G. Giori. 1996. Purification of $\alpha$-galactosidase from Lactobacillus fermentum. J. Biotechnol. 45: 103-105. https://doi.org/10.1016/0168-1656(95)00149-2
  10. Gote, M., H. Umlakar, I. Khan, and J. Khire. 2004. Thermostable $\alpha$-galactosidase from Bacillus stearothermophilus (NCIM 5146) and its application in the removal of flatulence causing factors from soymilk. Process Biochem. 39: 1723-1729. https://doi.org/10.1016/j.procbio.2003.07.008
  11. Goudreault, P. R. and J. A. Webb. 1983. Partial purification and properties of alkaline $\alpha$-galactosidase from mature leaves of Cucurbita pepo. Plant Physiol. 71: 1485-1491.
  12. Greiner, C. 1990. Economic implications of modified soybean treatment, pp. 360-416. IOWA Soybean Promotion Board. IOWA Agricultural and Home Economics Experimental Station, IOWA State University.
  13. Jin, F., Y. Li, C. Zhang, and H. Yu. 2001. Thermostable $\alpha$- galactosidase production from the thermophilic and aerobic Bacillus sp. JF strain. Process Biochem. 36: 559-564. https://doi.org/10.1016/S0032-9592(00)00247-8
  14. Kim, J. S., J. H. Kim, E. K. Ryu, J. K. Kim, C. K. H. Kim, I. Wang, and K. Lee. 2004. Versatile catabolic properties of the Tn4371-encoded bph pathway in Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643. J. Microbiol. Biotechnol. 14: 302-311.
  15. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline protease from a bioindustrial view point. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  16. Kunitz, M. 1947. Crystalline soybean trypsin inhibitor. II: General properties. Gen. Physiol. 30: 291-310. https://doi.org/10.1085/jgp.30.4.291
  17. Leblanc, J. G., A. Silvestroni, C. Connes, and F. Sesma. 2004. Reduction of non digestible oligosaccharides in soymilk application of engineered lactic acid bacteria that produce $\alpha$- galactosidase. Gen. Mol. Res. 3: 432-440.
  18. Li, X., P. Yang, F. Yan, F. Zuo, and F. Zin. 1997. Factors regulating production of alpha-galactosidase from Bacillus sp. JF(2). Lett. Appl. Microbiol. 25: 1-4. https://doi.org/10.1046/j.1472-765X.1997.00155.x
  19. Linden, J. C. 1982. Immobilized$\alpha$-galactosidase in the sugar beet industry. Enzyme Microb. Technol. 4: 130-136. https://doi.org/10.1016/0141-0229(82)90103-X
  20. Lowry, O. H., N. J. Rosenberg, A. L. Farr, and R. L. Randalt. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  21. Mulimani, V. H. and Ramalingam G. 1995. Enzymic hydrolysis of raffinose and stachyose present in soymilk by crude $\alpha$- galactosidase from Gibberella fujikuroi. Biochem. Mol. Biol. Int. 36: 897-905.
  22. Nelson, N. A. 1944. Photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem. 153: 375-378.
  23. Olsson, M. L., C. A. Hill. H. Dela Vega, Q. P. Liu, M. R. Stroud, and J. Valdinocei. 2004. Universal red blood cells - enzymatic conversion of blood group A and B antigens. Transfus. Clin. Biol. 11: 33-39. https://doi.org/10.1016/j.tracli.2003.12.002
  24. Pedrson, O. M. and R. E. Goodman. 1980. Isozymes of $\alpha$- galactosidase from Bacillus sterothermophillus. Can. J. Microbiol. 56: 3505-3510.
  25. Prashanth, S. J. and V. H. Mulimani. 2005. Soymilk oligosaccharide hydrolysis by Asperigillus oryzae $\alpha$-galactosidase immobilized in calcium alginate. Process Biochem. 40: 1199-1205. https://doi.org/10.1016/j.procbio.2004.04.011
  26. Ramlingam, and V. H. Mulimani. 2004. Purification and characterization of guar galactomannan degrading $\alpha$-galactosidase from Aspergillus oryzae DR-5 J. Microbiol. Biotechnol. 14: 863-867.
  27. Ratto, M., M. Siikaaho, J. Buchart, A. Valkejarvi, and L. Viikari. 1993. Enzymatic hydrolysis of isolated and fibre bound galactoglucomannans from fine wood and fine kraft pulp. Appl. Microbiol. Biotechnol. 40: 449-454.
  28. Rios, S., M. Pedregosa, I. F. Monstriol, and F. Laboarda. 1993. Purification and molecular properties of an $\alpha$-galactosidase synthesized and secreted by Aspergillus nidulans. FEMS Microbiol. Lett. 112: 35-42.
  29. Roychoudary, S., S. J Parulekar, and W. A. Weigand. 1998. Cell growth and $\alpha$-amylase production characteristics of Bacillus amyloliquefaciens. Biotechnol. Bioeng. 33: 197-206.
  30. Shivanna, B. D., M. Ramakrishna, and Ramadoss C. S. 1989. Enzymatic hydrolysis of raffinose and stachyose in soymilk by $\alpha$-galactosidase from germinating gaur (Cymopsis tetragnolbus). Process Biochem. 24: 197-201.
  31. Silva, E. H., A. Silvestroni, J. G. Leblanc, J. C. Piard, D. G. Sovoy, and F. Sessma. 2006. A thermostable$\alpha$-galactosidase from Lactobacillus fermentum CRL722: Genetic characterization and main properties. Curr. Microbiol. 53: 374-378. https://doi.org/10.1007/s00284-005-0442-y
  32. Sirpaun, T., K. Aoki, K. Yamamoto, D. Tongkao, and H. Kumagai. 2003. Purification and characterization of thermostable $\alpha$-galactosidase from Ganoderma lucidium. Biosci. Biotechnol. Biochem. 67: 1485-1491. https://doi.org/10.1271/bbb.67.1485
  33. Smith, A. K. and J. J. Circle (eds.). 1972. Soybeans: Chemistry and Technology, pp. 462-486. Avi Publishing, Westport, CT.
  34. Steggerda, F. R., E. A, Richard, and J. J. Rackis. 1974. Effects of various soybean products on flatulence in the adult man. Proc. Soc. Exp. Biol. Med. 121: 1723-1739.
  35. Tablot, G. and J. Sygusch. 1990. Purification and characterization of thermostable $\beta$-mannanase and $\beta$-galactosidase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 56: 3505-3510
  36. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molec. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  37. Tanaka, M., D. Thananunkul, T. C Lee, and C. O. Chichester. 1975. A simplified method for quantitative determination of sucrose, raffinose and stachyose in legumes. J. Food Sci. 40: 1087-1088. https://doi.org/10.1111/j.1365-2621.1975.tb02274.x
  38. Ulezelo, I. V. and O. M. Zapromotova. 1982. Microbial $\alpha$- galactosidase (a revivew). Appl. Biochem. Microbiol. 18: 1-12.
  39. Wang, S. L., T. Y. Kao, C. L. Wang, Y. H. Yen, M. K. Chern, and Y. H. Chen. 2006. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for $\beta$-chitin preparation. Enzyme Microb. Technol. 39: 724-731. https://doi.org/10.1016/j.enzmictec.2005.12.007
  40. Xiao, M., K. Tanaka, X. M Qian, K. Yamamoto, and H. Kumagai. 2000. High yield production and characterization of $\alpha$-galactosidase from Bifidobacterium breve grown on raffinose. Biotechnol. Lett. 22: 747-751. https://doi.org/10.1023/A:1005626228056

Cited by

  1. Aga1, the first alpha-Galactosidase from the human bacteria Ruminococcus gnavus E1, efficiently transcribed in gut conditions vol.163, pp.1, 2010, https://doi.org/10.1016/j.resmic.2011.10.005
  2. A New α-Galactosidase from Thermoacidophilic Alicyclobacillus sp. A4 with Wide Acceptor Specificity for Transglycosylation vol.174, pp.1, 2010, https://doi.org/10.1007/s12010-014-1050-8
  3. Biotechnological potential of microbial α-galactosidases vol.34, pp.4, 2010, https://doi.org/10.3109/07388551.2013.794124
  4. Developing Food Supplements for Moderately Malnourished Children: Lessons Learned from Ready-to-Use Therapeutic Foods vol.36, pp.1, 2010, https://doi.org/10.1177/15648265150361s109
  5. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides vol.20, pp.8, 2010, https://doi.org/10.3390/molecules200813550
  6. Bacillus licheniformis 분리균 2종의 α-Galactosidase 생산성과 효소특성 vol.43, pp.3, 2010, https://doi.org/10.4014/mbl.1505.05006
  7. Purification and characterisation of intracellular alpha-galactosidases from Acinetobacter sp. vol.5, pp.6, 2010, https://doi.org/10.1007/s13205-015-0290-9
  8. Hydrolysis of Oligosaccharides by a Thermostable α-Galactosidase from Termitomyces eurrhizus vol.16, pp.12, 2010, https://doi.org/10.3390/ijms161226159
  9. Improving the Secretory Expression of an α-Galactosidase from Aspergillus niger in Pichia pastoris vol.11, pp.8, 2010, https://doi.org/10.1371/journal.pone.0161529
  10. Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase vol.16, pp.None, 2010, https://doi.org/10.1186/s12934-017-0638-4
  11. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0197067
  12. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications vol.35, pp.2, 2010, https://doi.org/10.1007/s11274-019-2591-3
  13. The melREDCA Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in Bacillus subtilis vol.201, pp.15, 2019, https://doi.org/10.1128/jb.00109-19
  14. Fermentation Production, Purification and Characterization of a Fungal α-galactosidase from Trametes versicolor and Its Synergistic Degradation of Guar Gum with Mannanase vol.26, pp.2, 2020, https://doi.org/10.3136/fstr.26.265
  15. Characterization of β-galactosidase and α-galactosidase activities from the halophilic bacterium Gracilibacillus dipsosauri vol.71, pp.1, 2010, https://doi.org/10.1186/s13213-021-01657-1
  16. Enriching Lactobacilli from Fermented Pulse Dal Flour-Analyzing its Efficacy in Utilizing Carbohydrates and Production of α-galactosidase Enzyme During Pigeon Pea Fermentation vol.15, pp.4, 2021, https://doi.org/10.22207/jpam.15.4.22