DOI QR코드

DOI QR Code

Comparative Study of Rhizobacterial Community Structure of Plant Species in Oil-Contaminated Soil

  • Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyong-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Jai-Soo (Department of Life Science, Kyonggi University)
  • 투고 : 2010.03.12
  • 심사 : 2010.06.19
  • 발행 : 2010.09.28

초록

In this study, the identity and distribution of plants and the structure of their associated rhizobacterial communities were examined in an oil-contaminated site. The number of plant species that formed a community or were scattered was 24. The species living in soil highly contaminated with total petroleum hydrocarbon (TPH) (9,000-4,5000 mg/g-soil) were Cynodon dactylon, Persicaria lapathifolia, and Calystegia soldanella (a halophytic species). Among the 24 plant species, the following have been known to be effective for oil removal: C. dactylon, Digitaria sanguinalis, and Cyperus orthostachyus. Denaturing gradient gel electrophoresis (DGGE) profile analysis showed that the following pairs of plant species had highly similar (above 70%) rhizobacterial community structures: Artemisia princeps and Hemistepta lyrata; C. dactylon and P. lapathifolia; Carex kobomugi and Cardamine flexuosa; and Equisetum arvense and D. sanguinalis. The major groups of rhizobacteria were Beta-proteobacteria, Gamma-proteobacteria, Chloroflexi, Actinobacteria, and unknown. Based on DGGE analysis, P. lapathifolia, found for the first time in this study growing in the presence of high TPH, may be a good species for phytoremediation of oil-contaminated soils and in particular, C. soldanella may be useful for soils with high TPH and salt concentrations. Overall, this study suggests that the plant roots, regardless of plant species, may have a similar influence on the bacterial community structure in oil-contaminated soil.

키워드

참고문헌

  1. Atlas, R. M. and R. Bartha. 1992. Microbial Ecology: Fundamentals and Applications. Macmillan Publishing Co., New York.
  2. Banks, M. K., R. S. Govindaraju, A. P. Schwab, and P. Kulakow. 2000. Part I: Field demonstration, pp. 3-88. In S. Fiorenza, C. L. Oubre, and C. H. Ward (eds.). Phytoremediation of Hydrocarbon-contaminated Soil. Lewis Publishers, Baton Rouge, LA.
  3. Cebron, A., T. Beguiristain, P. Faure, M. P. Norini, J. F. Masfaraud, and C. Leyval. 2009. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl. Environ. Microbiol. 75: 6322-6330. https://doi.org/10.1128/AEM.02862-08
  4. Davis, L. C., L. E. Erickson, E. Lee, J. F. Shimp, and J. C. Tracy. 1993. Modeling the effects of plants on the bioremediation of contaminated soil and ground water. Environ. Prog. 12: 67-75. https://doi.org/10.1002/ep.670120112
  5. Dazy, M., J. F. Ferard, and J. F. Masfaraud. 2009. Use of a plant multiple-species experiment for assessing the habitat function of a coke factory soil before and after thermal desorption treatment. Ecol. Eng. 35: 1493-1500. https://doi.org/10.1016/j.ecoleng.2009.06.006
  6. Duncan, W. H. 1974. Vascular halophytes of the Atlantic and Gulf coasts of North America north of Mexico, pp. 23-50. In R. J. Reihold and W. H. Queen (eds.). Ecology of Halophytes. Academic Press, New York.
  7. Escalante-Espinosa, E., M. E. Gallegos-Martinez, E. Favela-Torres, and M. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413. https://doi.org/10.1016/j.chemosphere.2004.10.034
  8. Fang, C., M. Radosevich, and J. J. Fuhrmann. 2001. Atrazine and phenanthrene degradation in grass rhizosphere soil. Soil Biol. Biochem. 33: 671-678. https://doi.org/10.1016/S0038-0717(00)00216-9
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  10. Finlay, B. J., S. C. Maberly, and J. I. Cooper. 1997. Microbial diversity and ecological function. Oikos 80: 209-213. https://doi.org/10.2307/3546587
  11. Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416.
  12. Flowers, T. J. and T. D. Colmer. 2008. Salinity tolerance in halophytes. New Phytol. 179: 945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
  13. Godwin, B. and J. Thorpe. 2000. Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites, Phase II Final Report, R. E. Farrell (ed.). Petroleum Technology Alliance of Canada (PTAC).
  14. Greer, C. W., L. G. Whyte, and T. D. Niederberge. 2010. Microbial communities in hydrocarbon-contaminated temperate, tropical, alpine, and polar soils, Part 22, pp. 2313-2328. In K. N. Timmis (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer Verlag.
  15. Groffman, P. M. and P. J. Bohlen. 1999. Soil and sediment biodiversity cross-system comparisons and large-scale effects. BioScience 49: 139-148. https://doi.org/10.2307/1313539
  16. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  17. Hutchinson, S. L., M. K. Banks, and A. P. Schwab. 2001. Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Qual. 30: 395-403. https://doi.org/10.2134/jeq2001.302395x
  18. Keiffer, C. H., C. K. Owens, and B. C. McCarthy. 1997. Phytoremediation of saline impacted soil. Am. J. Bot. 84: 86 [Abstract].
  19. Keiffer, C. H. and I. A. Ungar. 2002. Germination and establishment of halophytes on brine-affected soils. J. Appl. Ecol. 39: 402-415. https://doi.org/10.1046/j.1365-2664.2002.00720.x
  20. Kennedy, A. C. and K. L. Smith. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170: 75-86. https://doi.org/10.1007/BF02183056
  21. Kim, J., S. H. Kang, K. A. Min, K. S. Cho, and I. S. Lee. 2006. Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 41: 2503-2516. https://doi.org/10.1080/10934520600927658
  22. Kim, J., K. A. Min, K. S. Cho, and I. S. Lee. 2007. Enhanced bioremediation and modified bacterial community structure by barnyard grass in diesel-contaminated soil. Environ. Eng. Res. 12: 37-45. https://doi.org/10.4491/eer.2007.12.2.037
  23. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
  24. Kirkpatrick, W. D., P. M. White Jr., D. C. Wolf, G. J. Thoma, and C. M. Reynolds. 2006. Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil. Int. J. Phytoremediat. 8: 285-297. https://doi.org/10.1080/15226510600992840
  25. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
  26. Liuzinas, R., K. Jankevicius, M. Salkauskas, V. Rasomavicius, Z. Gudzinskas, and X. Sinkevicien. 2003. Phytoremediation of polluted soil at two sites in the district of Klaipeda (Lithuania). In W. Hogland and N. Kuznetsova (eds.). Kalmar Eco-Tech '03: Bioremediation and Leachate Treatment. University of Kalmar, Kalmar, Sweden.
  27. Lysnes, K., I. H. Thorseth, B. O. Steinsbu, L. Ovreas L, T. Torsvik, and P. B. Pedersen. 2004. Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol. Ecol. 50: 213-230. https://doi.org/10.1016/j.femsec.2004.06.014
  28. Medina, V. F., E. Maestri, M. Marmiroli, A. C. Dietz, and S. C. McCutcheon. 2003. Plant tolerances to contaminants, pp. 189-232. In S. C. McCutcheon and J. L. Schnoor (eds.). Phytoremediation: Transformation and Control of Contaminants. John Wiley, Hoboken, NJ.
  29. Merkl, N., R. Schultze-Kraft, and C. Infante. 2005. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 138: 86-91. https://doi.org/10.1016/j.envpol.2005.02.023
  30. Moser, M. and K. Haselwandter. 1983. Ecophysiology of mycorrhizal symbioses, pp. 391-411. In O. L. Lange, P. S. Nobel, C. B. Oxmond, and H. Ziegler (eds.). Physiological Plant Ecology III: Responses to the Chemical and Biological Environment. Springer-Verlag, Berlin.
  31. Nichols, T. D., D. C. Wolf, H. B. Rogers, C. A. Beyrouty, and C. M. Reynolds. 1997. Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut. 95: 165-178.
  32. Olson, P. E., A. Castro, M. Joern, N. M. DuTeau, E. A. H. Pilon-Smits, and K. F. Reardon. 2007. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J. Environ. Qual. 36: 1461-1469. https://doi.org/10.2134/jeq2006.0371
  33. Popp, N., M. Schlomann, and M. Mau. 2006. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152: 3291-3304. https://doi.org/10.1099/mic.0.29054-0
  34. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  35. Shimp, J. F., J. C. Tracy, L. C. Davis, E. Lee, W. Huang, L. E. Erickson, and J. L. Schnoor. 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. CRC Crit. Rev. Env. Sci. Technol. 23: 41-77. https://doi.org/10.1080/10643389309388441
  36. Sims, J. L., R. C. Sims, and J. E. Matthews. 1990. Approach to bioremediation of contaminated soil. Hazard. Waste Hazard. Mat. 7: 117-149. https://doi.org/10.1089/hwm.1990.7.117
  37. Tan, G. L., W. S. Shu, K. B. Hallberg, F. Li, C. Y. Lan, and L. N. Huang. 2007. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. FEMS Microbiol. Ecol. 59: 118-126. https://doi.org/10.1111/j.1574-6941.2006.00216.x
  38. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  39. Vavrek, M. C., H. Hunt, W. Colgan III, and D. Vavrek. 2004. Status of oil brine spill site remediation. Proceedings of International Petroleum Environment Conference, October 12-15, Albuquerque, NM, U.S.A.
  40. Wenzel, W. W., D. C. Adriano, D. Salt, and R. Smith. 1999. Phytoremediation: A plant-microbe-based remediation system, pp. 457-508. In D. Adriano, J. M. Bollag, W. T. Frankenberger Jr., and R. C. Sims (eds.). Bioremediation of Contaminated Soils. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI (Agronomy Monograph 37).
  41. White Jr., P. M., W. D. Kirkpatrick, G. J. Thoma, and D. C. Wolf. 2000. Using plants to remediate crude oil-contaminated soil. In Proceedings of the 7th International Petroleum Environmental Conference, Albuquerque, New Mexico.
  42. White Jr., P. M., D. C. Wolf, G. J. Thoma, and C. M. Reynolds. 2003. Influence of organic and inorganic soil amendments on plant growth in crude oil-contaminated soil. Int. J. Phytoremediat. 5: 381-397. https://doi.org/10.1080/15226510309359044
  43. Zhang, Q., Q. Zhou, L. Ren, Y. Zhu, and S. Sun. 2006. Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres. J. Environ. Sci. 18: 1101-1106. https://doi.org/10.1016/S1001-0742(06)60046-6
  44. Zhou, Q. X. and Y. F. Song. 2004. Principles and Methods of Contaminated Soil Remediation. Science Press, Beijing.

피인용 문헌

  1. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils vol.15, pp.10, 2010, https://doi.org/10.3390/ijerph15102168
  2. Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health vol.16, pp.14, 2010, https://doi.org/10.3390/ijerph16142474