References
-
Acree, T. E., E. P. Sonoff, and D. F. Splittstoesser. 1971. Determination of hydrogen sulfide in fermentation broths containing
$SO_2$ . Appl. Microbiol. 22: 110-112. - Aranda, A., E. Jimenez-Marti, H. Orozco, E. Matallana, and M. del Olmo. 2006. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J. Agric. Food Chem. 54: 5839-5846. https://doi.org/10.1021/jf060851b
- Bohlscheid, J. C., J. K. Fellman, X. D Wang, D. Ansen, and C. G. Edwards. 2007. The influence of nitrogen and biotin interaction on the performance of Saccharomyces in alcoholic fermentation. J. Appl. Microbiol. 102: 390-400.
- Carrasco, P., J. E. Perez-Ortin, and M. del Olmo. 2003. Arginase activity is a useful marker for nitrogen limitation during alcoholic fermentation. Syst. Appl. Microbiol. 26: 471-479. https://doi.org/10.1078/072320203322497518
- Donalies, U. E. B. and U. Stahl. 2002. Increasing sulfite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19: 475-484. https://doi.org/10.1002/yea.849
- Hansen, J. and P. F. Johannesen. 2000. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 263: 535-542. https://doi.org/10.1007/s004380051199
- Henschke, P. A. and V. Jiranek. 1993. Yeasts -Metabolism of nitrogen compounds, pp. 77-164. In G. H. Fleet (ed.). Wine Microbiology and Biotechnology. Harwood Academic, Chur, Switzerland.
- Jiranek, V., P. Langridge, and P. A. Henschke. 1995. Regulation of hydrogen sulfide liberation in wine-producing S. cerevisiae strains by assimilable nitrogen. Appl. Environ. Microbiol. 61: 461-467.
- Linderholm, A. L., C. L. Findleton, G. Kumar, Y. Hong, and L. F. Bisson. 2008. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74: 1418-1427 https://doi.org/10.1128/AEM.01758-07
- Marks, V., G. K. van der Merwe, and H. J. J. van Vuuren. 2003. Transcriptional profiling of wine yeast in fermenting grape juice: Regulatory effect of diammonium phosphate. FEMS Yeast Res. 3: 269-287. https://doi.org/10.1016/S1567-1356(02)00201-5
- Mendes-Ferreira, A., A. Mendes-Faia, and C. Leao. 2004. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J. Appl. Microbiol. 97: 540-545. https://doi.org/10.1111/j.1365-2672.2004.02331.x
- Mendes-Ferreira, A., M. del Olmo, J. Garcia-Martinez, E. Jimenez-Marti, A. Mendes-Faia, J. E. Perez-Ortin, and C. Leao. 2007. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentration during alcoholic fermentation. Appl. Environ. Microbiol. 73: 3049-3060. https://doi.org/10.1128/AEM.02754-06
- Mendes-Ferreira, A., M. del Olmo, J. Garcia-Martinez, E. Jimenez-Marti, C. Leao, A. Mendes-Faia, and J. E. Perez-Ortin. 2007. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Appl. Environ. Microbiol. 73: 5363-5369. https://doi.org/10.1128/AEM.01029-07
- Mendes-Ferreira, A., C. Barbosa, V. Falco, C. Leao, and A. Mendes-Faia. 2009. Hydrogen sulfide and other aroma compounds production by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J. Ind. Microbiol. Biotechnol. 36: 571-583. https://doi.org/10.1007/s10295-009-0527-x
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Office International de la Vigne et du Vin Recueil des methodes internationales d'analyse des vins et des mouts. OIV, Paris, 1990.
- Patton, E. E., C. Peyraud, A. Rouillon, Y. Surdin-Kerjan, M. Tyers, and D. Thomas. 2000. SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J. 19: 1613-1624. https://doi.org/10.1093/emboj/19.7.1613
- Rees, T. D., A. B. Gyllenspetz, and A. C. Docherty. 1971. The determination of trace amounts of sulfide in condensed steam with N,N-diethyl-p-phenylenediamine. Analyst 96: 201-208. https://doi.org/10.1039/an9719600201
- Rossignol, T., L. Dulau, A. Julien, and B. Blondin. 2003. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20: 1369-1385. https://doi.org/10.1002/yea.1046
-
Schmittgen, T. D. and K. J. Livak. 2008. Analyzing real-time PCR data by the comparative
$C_T$ method. Nature Protocols 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73 - Spiropoulos, A. and L. F. Bisson. 2000. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 66: 4421-4426. https://doi.org/10.1128/AEM.66.10.4421-4426.2000
- Spiropoulos, A., J. Tanaka, I. Flerianos, and L. F. Bisson. 2000. Characterization of hydrogen sulfide in commercial and natural wine isolates of Saccharomyces. Am. J. Enol. Vitic. 51: 233-248.
- Swiegers, J. H. and I. S. Pretorius. 2007. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 74: 954-960. https://doi.org/10.1007/s00253-006-0828-1
- Thomas, D. and Y. Surdin-Kerjan. 1997. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61: 503-532.
- Wang, X. D., J. C. Bohlscheid, and C. G. Edwards. 2003. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J. Appl. Microbiol. 94: 1-11.
- Wenzel, T. J., M. A. Luttik, J. A. van der Berg, and H. Y. de Steensma. 1993. Regulation of the PDA1 gene encoding the E1 alpha subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Eur. J. Biochem. 218: 405-411. https://doi.org/10.1111/j.1432-1033.1993.tb18390.x
-
Yoshida, S., J. Imoto, T. Minato, R. Oouchi, M. Sugihara, T. Imai, et al. 2008. Developing bottom-fermenting yeast strains that produce high
$SO_2$ levels by integrated metabolome and transcriptome analysis. Appl. Environ. Microbiol. 74: 2787-2796. https://doi.org/10.1128/AEM.01781-07
Cited by
- Effects of rehydration nutrients on H 2 S metabolism and formation of volatile sulfur compounds by the wine yeast VL3 vol.1, pp.None, 2010, https://doi.org/10.1186/2191-0855-1-36
- Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine vol.21, pp.5, 2011, https://doi.org/10.4014/jmb.1010.10058
- Wine flavor and aroma vol.38, pp.9, 2010, https://doi.org/10.1007/s10295-011-1018-4
- Intraspecific genotypic variability determines concentrations of key truffle volatiles vol.194, pp.3, 2010, https://doi.org/10.1111/j.1469-8137.2012.04077.x
- Next-generation approaches to the microbial ecology of food fermentations vol.45, pp.7, 2010, https://doi.org/10.5483/bmbrep.2012.45.7.148
- The yeast hypoxic responses, resources for new biotechnological opportunities vol.34, pp.12, 2010, https://doi.org/10.1007/s10529-012-1039-8
- Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae vol.32, pp.9, 2010, https://doi.org/10.1093/molbev/msv112
- Molecular and Phenotypic Characterization of Metschnikowia pulcherrima Strains from Douro Wine Region vol.4, pp.1, 2010, https://doi.org/10.3390/fermentation4010008
- Phenotypic and transcriptional analysis of Saccharomyces cerevisiae during wine fermentation in response to nitrogen nutrition and co-inoculation with Torulaspora delbrueckii vol.137, pp.None, 2010, https://doi.org/10.1016/j.foodres.2020.109663