DOI QR코드

DOI QR Code

The Wine Yeast Strain-Dependent Expression of Genes Implicated in Sulfide Production in Response to Nitrogen Availability

  • Mendes-Ferreira, A. (Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB-UTAD), University of Tras-os-Montes and Alto Douro, School of Life Sciences and Environment) ;
  • Barbosa, C. (Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB-UTAD), University of Tras-os-Montes and Alto Douro, School of Life Sciences and Environment) ;
  • Jimenez-Marti, E. (Departament de Bioquimica i Biologia Molecular, Universitat de Valencia) ;
  • Del Olmo, M. (Departament de Bioquimica i Biologia Molecular, Universitat de Valencia) ;
  • Mendes-Faia, A. (Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB-UTAD), University of Tras-os-Montes and Alto Douro, School of Life Sciences and Environment)
  • Received : 2010.03.25
  • Accepted : 2010.06.06
  • Published : 2010.09.28

Abstract

Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here, we investigated by real-time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16, and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. The strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120 h and 72 h, respectively. In the presence of 267 mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently upregulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated with sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for the genetic improvement of wine yeasts.

Keywords

References

  1. Acree, T. E., E. P. Sonoff, and D. F. Splittstoesser. 1971. Determination of hydrogen sulfide in fermentation broths containing $SO_2$. Appl. Microbiol. 22: 110-112.
  2. Aranda, A., E. Jimenez-Marti, H. Orozco, E. Matallana, and M. del Olmo. 2006. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J. Agric. Food Chem. 54: 5839-5846. https://doi.org/10.1021/jf060851b
  3. Bohlscheid, J. C., J. K. Fellman, X. D Wang, D. Ansen, and C. G. Edwards. 2007. The influence of nitrogen and biotin interaction on the performance of Saccharomyces in alcoholic fermentation. J. Appl. Microbiol. 102: 390-400.
  4. Carrasco, P., J. E. Perez-Ortin, and M. del Olmo. 2003. Arginase activity is a useful marker for nitrogen limitation during alcoholic fermentation. Syst. Appl. Microbiol. 26: 471-479. https://doi.org/10.1078/072320203322497518
  5. Donalies, U. E. B. and U. Stahl. 2002. Increasing sulfite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19: 475-484. https://doi.org/10.1002/yea.849
  6. Hansen, J. and P. F. Johannesen. 2000. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 263: 535-542. https://doi.org/10.1007/s004380051199
  7. Henschke, P. A. and V. Jiranek. 1993. Yeasts -Metabolism of nitrogen compounds, pp. 77-164. In G. H. Fleet (ed.). Wine Microbiology and Biotechnology. Harwood Academic, Chur, Switzerland.
  8. Jiranek, V., P. Langridge, and P. A. Henschke. 1995. Regulation of hydrogen sulfide liberation in wine-producing S. cerevisiae strains by assimilable nitrogen. Appl. Environ. Microbiol. 61: 461-467.
  9. Linderholm, A. L., C. L. Findleton, G. Kumar, Y. Hong, and L. F. Bisson. 2008. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74: 1418-1427 https://doi.org/10.1128/AEM.01758-07
  10. Marks, V., G. K. van der Merwe, and H. J. J. van Vuuren. 2003. Transcriptional profiling of wine yeast in fermenting grape juice: Regulatory effect of diammonium phosphate. FEMS Yeast Res. 3: 269-287. https://doi.org/10.1016/S1567-1356(02)00201-5
  11. Mendes-Ferreira, A., A. Mendes-Faia, and C. Leao. 2004. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J. Appl. Microbiol. 97: 540-545. https://doi.org/10.1111/j.1365-2672.2004.02331.x
  12. Mendes-Ferreira, A., M. del Olmo, J. Garcia-Martinez, E. Jimenez-Marti, A. Mendes-Faia, J. E. Perez-Ortin, and C. Leao. 2007. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentration during alcoholic fermentation. Appl. Environ. Microbiol. 73: 3049-3060. https://doi.org/10.1128/AEM.02754-06
  13. Mendes-Ferreira, A., M. del Olmo, J. Garcia-Martinez, E. Jimenez-Marti, C. Leao, A. Mendes-Faia, and J. E. Perez-Ortin. 2007. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Appl. Environ. Microbiol. 73: 5363-5369. https://doi.org/10.1128/AEM.01029-07
  14. Mendes-Ferreira, A., C. Barbosa, V. Falco, C. Leao, and A. Mendes-Faia. 2009. Hydrogen sulfide and other aroma compounds production by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J. Ind. Microbiol. Biotechnol. 36: 571-583. https://doi.org/10.1007/s10295-009-0527-x
  15. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  16. Office International de la Vigne et du Vin Recueil des methodes internationales d'analyse des vins et des mouts. OIV, Paris, 1990.
  17. Patton, E. E., C. Peyraud, A. Rouillon, Y. Surdin-Kerjan, M. Tyers, and D. Thomas. 2000. SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J. 19: 1613-1624. https://doi.org/10.1093/emboj/19.7.1613
  18. Rees, T. D., A. B. Gyllenspetz, and A. C. Docherty. 1971. The determination of trace amounts of sulfide in condensed steam with N,N-diethyl-p-phenylenediamine. Analyst 96: 201-208. https://doi.org/10.1039/an9719600201
  19. Rossignol, T., L. Dulau, A. Julien, and B. Blondin. 2003. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20: 1369-1385. https://doi.org/10.1002/yea.1046
  20. Schmittgen, T. D. and K. J. Livak. 2008. Analyzing real-time PCR data by the comparative $C_T$ method. Nature Protocols 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  21. Spiropoulos, A. and L. F. Bisson. 2000. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 66: 4421-4426. https://doi.org/10.1128/AEM.66.10.4421-4426.2000
  22. Spiropoulos, A., J. Tanaka, I. Flerianos, and L. F. Bisson. 2000. Characterization of hydrogen sulfide in commercial and natural wine isolates of Saccharomyces. Am. J. Enol. Vitic. 51: 233-248.
  23. Swiegers, J. H. and I. S. Pretorius. 2007. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 74: 954-960. https://doi.org/10.1007/s00253-006-0828-1
  24. Thomas, D. and Y. Surdin-Kerjan. 1997. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61: 503-532.
  25. Wang, X. D., J. C. Bohlscheid, and C. G. Edwards. 2003. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J. Appl. Microbiol. 94: 1-11.
  26. Wenzel, T. J., M. A. Luttik, J. A. van der Berg, and H. Y. de Steensma. 1993. Regulation of the PDA1 gene encoding the E1 alpha subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Eur. J. Biochem. 218: 405-411. https://doi.org/10.1111/j.1432-1033.1993.tb18390.x
  27. Yoshida, S., J. Imoto, T. Minato, R. Oouchi, M. Sugihara, T. Imai, et al. 2008. Developing bottom-fermenting yeast strains that produce high $SO_2$ levels by integrated metabolome and transcriptome analysis. Appl. Environ. Microbiol. 74: 2787-2796. https://doi.org/10.1128/AEM.01781-07

Cited by

  1. Effects of rehydration nutrients on H 2 S metabolism and formation of volatile sulfur compounds by the wine yeast VL3 vol.1, pp.None, 2010, https://doi.org/10.1186/2191-0855-1-36
  2. Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine vol.21, pp.5, 2011, https://doi.org/10.4014/jmb.1010.10058
  3. Wine flavor and aroma vol.38, pp.9, 2010, https://doi.org/10.1007/s10295-011-1018-4
  4. Intraspecific genotypic variability determines concentrations of key truffle volatiles vol.194, pp.3, 2010, https://doi.org/10.1111/j.1469-8137.2012.04077.x
  5. Next-generation approaches to the microbial ecology of food fermentations vol.45, pp.7, 2010, https://doi.org/10.5483/bmbrep.2012.45.7.148
  6. The yeast hypoxic responses, resources for new biotechnological opportunities vol.34, pp.12, 2010, https://doi.org/10.1007/s10529-012-1039-8
  7. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae vol.32, pp.9, 2010, https://doi.org/10.1093/molbev/msv112
  8. Molecular and Phenotypic Characterization of Metschnikowia pulcherrima Strains from Douro Wine Region vol.4, pp.1, 2010, https://doi.org/10.3390/fermentation4010008
  9. Phenotypic and transcriptional analysis of Saccharomyces cerevisiae during wine fermentation in response to nitrogen nutrition and co-inoculation with Torulaspora delbrueckii vol.137, pp.None, 2010, https://doi.org/10.1016/j.foodres.2020.109663