DOI QR코드

DOI QR Code

Growth Inhibition of Microcystis aeruginosa by a Glycolipid-Type Compound from Bacillus subtilis C1

  • Kim, Hee-Sik (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Chi-Yong (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Joung, Seung-Hyun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Jong-Seog (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Hee-Mock (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2010.02.10
  • Accepted : 2010.04.02
  • Published : 2010.08.28

Abstract

We attempted to identify the compound responsible for the growth inhibition of Microcystis aeruginosa occurring when a culture broth of Bacillus subtilis C1 was added to the medium. The active compound was purified from B. subtilis C1 culture broth by adsorption chromatography and HPLC, and was identified as a type of glycolipid based on $^1H$ NMR and MS analyses. The purified active compound completely inhibited the growth of M. aeruginosa at a concentration of 10 ${\mu}g/ml$. This is the first report of a glycolipid produced by a Bacillus strain that has potential as an agent for the selective control of bloom-forming M. aeruginosa.

Keywords

References

  1. Ahn, C. Y., S. H. Joung, J. H. Jeon, H. S. Kim, B. D. Yoon, and H. M. Oh. 2003. Selective control of cyanobacteria by surfactincontaining culture broth of Bacillus subtilis C1. Biotechnol. Lett. 25: 1137-1142. https://doi.org/10.1023/A:1024508927361
  2. Ahn, C. Y., M. H. Park, S. H. Joung, H. S. Kim, K. Y. Jang, and H. M. Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: Laboratory and enclosure studies. Environ. Sci. Technol. 37: 3031-3037. https://doi.org/10.1021/es034048z
  3. Ball, A. S., M. Williams, D. Vincent, and J. Robinson. 2001. Algal growth control by a barley straw extract. Bioresour. Technol. 77: 177-181. https://doi.org/10.1016/S0960-8524(00)00148-6
  4. Choi, H. J., B. H. Kim, J. D. Kim, and M. S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (cyanobacteria) in eutrophic freshwaters. Biol. Control 33: 335-343. https://doi.org/10.1016/j.biocontrol.2005.03.007
  5. Dow, C. S. and U. K. Swoboda. 2000. Cyanotoxins, pp. 613- 632. In B. A. Whitton and M. Potts (eds.). The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht.
  6. Kim, H. S., C. H. Lee, H. H. Suh, K. H. Ahn, H. M. Oh, K. S. Kwon, J. W. Yang, and B. D. Yoon. 1997. A lipopeptide biosurfactant produced by Bacillus subtilis C9 selected through the oil film-collapsing assay. J. Microbiol. Biotechnol. 7: 180-188.
  7. Kim, H. S., B. D. Yoon, C. H. Lee, H. H. Suh, H. M. Oh, T. Katsuragi, and Y. Tani. 1997. Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J. Ferment. Bioeng. 84: 41-46. https://doi.org/10.1016/S0922-338X(97)82784-5
  8. Kodani, S., A. Imoto, A. Mitsutani, and M. Murakami. 2002. Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14: 109-114. https://doi.org/10.1023/A:1019533414018
  9. Lee, Y. K., B. D. Yoon, J. H. Yoon, S. G. Lee, J. J. Song, J. G. Kim, H. M. Oh, and H. S. Kim. 2007. Cloning of srfA operon from Bacillus subtilis C9 and its expresion in E. coli. Appl. Microbiol. Biotechnol. 75: 567-572.
  10. Li, F. M. and H. Y. Hu. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 71: 6545-6553. https://doi.org/10.1128/AEM.71.11.6545-6553.2005
  11. Rinehart, K. L., M. Namikoshi, and B. W. Choi. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 6: 159-176. https://doi.org/10.1007/BF02186070
  12. Sigee, D. C., R. Glenn, M. J. Andrews, E. G. Bellinger, R. D. Butler, H. A. S. Epton, and R. D. Hendry. 1999. Biological control of cyanobacteria: Principles and possibilities. Hydrobiologia 395/396: 161-172. https://doi.org/10.1023/A:1017097502124
  13. Watanabe, M. F., K. I. Harada, K. Matsuura, M. Watanabe, and M. Suzuki. 1989. Heptapeptide toxin production during the batch culture of two Microcystis species (cyanobacteria). J. Appl. Phycol. 1: 161-165. https://doi.org/10.1007/BF00003879
  14. Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K. I. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J. Appl. Phycol. 10: 391-397. https://doi.org/10.1023/A:1008077414808
  15. Yoshikawa, K., K. Adachi, M. Nishijima, T. Takadera, S. Tamaki, K. I. Harada, K. Mochida, and H. Sano. 2000. ${\beta}$- Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Appl. Environ. Microbiol. 66: 718-722. https://doi.org/10.1128/AEM.66.2.718-722.2000

Cited by

  1. Establishment of a new strategy against Microcystis bloom using newly isolated lytic and toxin-degrading bacteria vol.30, pp.3, 2010, https://doi.org/10.1007/s10811-018-1403-8
  2. Effects of Bacillus subtilis on the growth, colony maintenance, and attached bacterial community composition of colonial cyanobacteria vol.26, pp.15, 2010, https://doi.org/10.1007/s11356-019-04902-y