DOI QR코드

DOI QR Code

Isolation, Characterization, and Application of Chitosan-Degrading Fungus from Soil

  • Wei, Xinlin (Institute of Food Engineering, College of Life and Environment Science, Shanghai Normal University) ;
  • Chen, Wei (Institute of Food Engineering, College of Life and Environment Science, Shanghai Normal University) ;
  • Xiao, Ming (Institute of Food Engineering, College of Life and Environment Science, Shanghai Normal University) ;
  • Xiao, Jianbo (Institute of Food Engineering, College of Life and Environment Science, Shanghai Normal University) ;
  • Wang, Yuanfeng (Institute of Food Engineering, College of Life and Environment Science, Shanghai Normal University)
  • 투고 : 2009.09.20
  • 심사 : 2010.03.02
  • 발행 : 2010.07.28

초록

A chitosan-degrading fungus, BSF114, was isolated from soil. The culture preparation showed strong chitosanolytic enzyme activity at an optimum pH of 4.0 and optimum temperature of $60^{\circ}C$ after 36-40 h fermentation. The rapid decrease in the viscosity of the chitosan solution early in the reaction suggested an endo-type cleavage of the polymeric chitosan chains. To identify the isolated fungus, molecular biological and morphological methods were used. The fungal internal transcribed spacer (ITS) region 1 was amplified, sequenced, and then compared with related sequences in the GenBank database using BLAST. The phylogenetic relationships were then analyzed, and the results showed that the fungus belongs to Aspergillus fumigatus. Morphological observations were also used to confirm the above conclusion. The chitooligosaccharides (COS) obtained through hydrolyzing the colloidal chitosan showed that A. fumigatus BSF114 is suitable for degrading chitosan and producing chitooligosaccharides on a large scale. High concentrations of the COS (1,000 and 500 ${\mu}g/ml$) significantly proliferated mice marrow cells.

키워드

참고문헌

  1. Aktuganov, G. E., A. V. Shirokov, and A. I. Melent'ev. 2003. Isolation and characterization of chitosanase from the strain Bacillus sp.739. Appl. Biochem. Microb. 39: 469-474. https://doi.org/10.1023/A:1025492518159
  2. Belalia, R., S. Grelier, M. Benaissa, and V. Coma. 2008. New bioactive biomaterials based on quaternized chitosan. J. Agric. Food Chem. 56: 1582-1588. https://doi.org/10.1021/jf071717+
  3. Bernhard, J., K. Andreas, S. Axel, W. Gerhard, G. Heike, B. Sucharit, and A. B. Axel. 1997. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun. 65: 5110-5117.
  4. Cheng, C. Y., C. H. Chang, Y. J. Wu, and Y. K. Li. 2006. Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. J. Biol. Chem. 6: 3137-3144.
  5. Choi, Y. J., E. J. Kim, Z. Piao, Y. C. Yun, and Y. C. Shin. 2004. Purification and characterization of chitosanase from Bacillus sp. strain kctc 0377bp and its application for the production of chitosan oligosaccharides. Appl. Environ. Microbiol. 70: 4522-4531. https://doi.org/10.1128/AEM.70.8.4522-4531.2004
  6. Gardes, M. and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  7. Giustina, A. and P. Ventura. 1995. Weight-reducing regimens in obese subjects: Effects of a new dietary fiber integrator. Acta Toxicol. Therap. 16: 199-214.
  8. Jeon, Y. J. and S. K. Kim. 2002. Antitumor activity of chisan oligosaccharides produced in an ultra filtration membrane reactor system. J. Microbiol. Biotechnol. 12: 503-507.
  9. Jung, W. J., J. H. Kuk, K. Y. Kim, K. C. Jung, and R. D. Park. 2006. Purification and characterization of exo-beta-D-glucosaminidase from Aspergillus fumigatus S-26. Protein Expr. Purif. 45: 125-131. https://doi.org/10.1016/j.pep.2005.06.016
  10. Kim, S. K. and N. Rajapakse. 2005. Enzymatic production and biological activities of chitosanoligosaccharides (COS): A review. Carbohydr. Polym. 62: 357-368. https://doi.org/10.1016/j.carbpol.2005.08.012
  11. Kurakake, M., S. Yo-u, K. Nakagawa, M. Sugihara, and T. Komaki. 2000. Properties of chitosanase from Bacillus cereus S1. Curr. Microbiol. 40: 6-9. https://doi.org/10.1007/s002849910002
  12. Latge, J. P. 1999. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12: 310-350.
  13. Leaw, S. N., H. C. Chang, H. F. Sun, R. Barton, J. P. Bouchara, and C. C. Tsung. 2006. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J. Clin. Microbiol. 44: 693-699. https://doi.org/10.1128/JCM.44.3.693-699.2006
  14. Macchi, G. 1996. A new approach to the treatment of obesity: Chitosan's effects on body weight reduction and plasma cholesterol levels. Acta Toxicol. Therap. 27: 303-320.
  15. Makimura, K., T. Mochizuki, A. Hasegawa, K. Uchida, H. Saito, and H. Yamaguchi. 1998. Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J. Clin. Microbiol. 36: 2629-2633.
  16. Makimura, K., Y. Tamura, T. Mochizuki, A. Hasegawa, Y. Tajiri, R. Hanazawa, K. Uchida, H. Saito, and H. Yamaguchi. 1999. Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J. Clin. Microbiol. 37: 920-924.
  17. Rakeman, J. L., U. Bui, L. F. Karen, Y. C. Chen, R. J. Honeycutt, and B. T. Cookson. 2005. Multilocus DNA sequence comparisons rapidly identify pathogenic molds. J. Clin. Microbiol. 43: 3324-3333. https://doi.org/10.1128/JCM.43.7.3324-3333.2005
  18. Shee, F. L. T., J. Arul, S. Brunet, and L. Bazinet. 2008. Performing a three-step process for conversion of chitosan to its oligomers using a unique bipolar membrane electrodialysis system. J. Agric. Food Chem. 56: 10019-10026. https://doi.org/10.1021/jf801557v
  19. Shimosaka, M., Y. Fukumori, R. Kodaira, and M. Okazaki. 2000. Molecular cloning and characterization of a chitosanase from the chitosanolytic bacterium Burkholderia gladioli strain CHB101. Appl. Microbiol. Biotechnol. 54: 354-360. https://doi.org/10.1007/s002530000388
  20. Shimosaka, M., M. Nogawa, X. Y. Wang, M. Kumehara, and M. Okazaki. 1995. Production of two chitosanases from a chitosan-assimilating bacterium, Acinetobacter sp. strain CHB101. Appl. Environ. Microb. 61: 438-442.
  21. Voigt, K., E. Cigelnik, and K. O'Donnell. 1999. Phylogeny and PCR identification of clinically important zygomycetes based on nuclear ribosomal-DNA sequence data. J. Clin. Microbiol. 37: 3957-3964.
  22. Wang, Y., P. Zhou, J. Yu, X. Pan, P. Wang, W. Lan, and S. Tao. 2007. Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac. J. Clin. Nutr. 16 (Suppl 1): 174-177.
  23. Xia, G. Q., C. S. Jin, J. Zhou, S. J. Yang, S. Z. Zhang, and C. Jin. 2001. A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. Eur. J. Biochem. 268: 4079-4085. https://doi.org/10.1046/j.1432-1327.2001.02323.x
  24. Yun, C. S., D. Amakata, Y. Matsuo, H. Matsuda, and M. Kawamukai. 2005. New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida. Appl. Environ. Microbiol. 71: 5138-5144. https://doi.org/10.1128/AEM.71.9.5138-5144.2005
  25. Zhang, W. J. 1999. Biochemistry Research Technology On Carbohydrate Compounds, pp. 10-11, 2nd Ed. Zhejiang University Press.
  26. Zhao, J., F. R. Kong, R. Y. Li, X. H. Wang, Z. Wan, and D. L. Wang. 2001. Identification of Aspergillus fumigatus and related species by nested PCR targeting ribosomal DNA internal transcribed spacer. J. Clin. Microbiol. 39: 2261-2266. https://doi.org/10.1128/JCM.39.6.2261-2266.2001

피인용 문헌

  1. Cellulases fromPenicilliumspecies for producing fuels from biomass vol.3, pp.4, 2010, https://doi.org/10.4155/bfs.12.41
  2. Improving lignocellulolytic enzyme production withPenicillium: from strain screening to systems biology vol.4, pp.5, 2010, https://doi.org/10.4155/bfs.13.38
  3. Purification and Characterization of A New Cold-Adapted and Thermo-Tolerant Chitosanase from Marine Bacterium Pseudoalteromonas sp. SY39 vol.24, pp.1, 2010, https://doi.org/10.3390/molecules24010183
  4. Three glycoside hydrolase family 12 enzymes display diversity in substrate specificities and synergistic action between each other vol.46, pp.5, 2010, https://doi.org/10.1007/s11033-019-04999-x
  5. Evaluation of a Spinosad Controlled-Release Formulation Based on Chitosan Carrier: Insecticidal Activity against Plutella xylostella (L.) Larvae and Dissipation Behavior in Soil vol.6, pp.45, 2021, https://doi.org/10.1021/acsomega.1c04853