DOI QR코드

DOI QR Code

Purification and Characterization of a Laccase from the Edible Wild Mushroom Tricholoma mongolicum

  • Li, Miao (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Zhang, Guoqing (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Wang, Hexiang (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Ng, Tzibun (School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong)
  • Received : 2009.12.24
  • Accepted : 2010.05.03
  • Published : 2010.07.28

Abstract

A novel laccase from Tricholoma mongolicum was purified by using a procedure that entailed ion-exchange chromatographies on DEAE-cellulose, CM-cellulose, and Q-Sepharose, and FPLC-gel filtration on Superdex 75. The purified enzyme was obtained with a specific activity of 1,480 U/mg-protein and a final yield of 15%. It was found to be a monomeric protein with a molecular mass of 66 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was GIGPVADLYVGNRIL, similar to some but also different to other mushroom laccases. The optimum pH and temperature for the purified enzyme were pH 2 to pH 3 and $30^{\circ}C$, respectively. It displayed a low $K_m$ toward 2,7-azinobis (3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) and high $k_{cat}/K_m$ values. The purified laccase oxidized a wide range of lignin-related phenols, but exerted maximal activity on ABTS. It was significantly inhibited by $Hg^{2+}$ ions, and remarkably stimulated by $Cu^{2+}$ ions. It inhibited HIV-1 reverse transcriptase and proliferation of hepatoma HepG2 cells and breast cancer MCF7 cells with an $IC_{50}$ of 0.65 ${\mu}M$, 1.4 ${\mu}M$, and 4.2 ${\mu}M$, respectively, indicating that it is also an antipathogenic protein.

Keywords

References

  1. Bottcher, M. and F. Grosse. 1997. HIV-1 protease inhibits its homologous reverse transcriptase by protein-protein interaction. Nucleic Acids Res. 25: 1709-1714. https://doi.org/10.1093/nar/25.9.1709
  2. Bourbonnais, R. and M. G. Paice. 1990. Oxidation of nonphenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99-102. https://doi.org/10.1016/0014-5793(90)80298-W
  3. Bourbonnais, R., M. G. Paice, I. D. Reid, P. Lanthier, and M. Yaguchi. 1995. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61: 1876-1880.
  4. Dong, J. L. and Y. Z. Zhang. 2004. Purification and characterization of two laccase isoenzymes from a ligninolytic fungus Trametes gallica. Prep. Biochem. Biotechnol. 34: 179-194. https://doi.org/10.1081/PB-120030876
  5. Eggert, C., U. Temp, and K. E. Eriksson. 1996. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ Microbiol. 62: 1151-1158.
  6. Fong, W. P., W. Y. Mock, and T. B. Ng. 2000. Intrinsic ribonuclease activities in ribonuclease and ribosome-inactivating proteins from the seeds of bitter gourd. Int. J. Biochem. Cell Biol. 32: 571-577. https://doi.org/10.1016/S1357-2725(99)00149-1
  7. Galhaup, C., S. Goller, C. K. Peterbauer, J. Strauss, and D. Haltrich. 2002. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148: 2159-2169.
  8. Garzillo, A. M., M. C. Colao, V. Buonocore, R. Oliva, L. Falcigno, M. Saviano, et al. 2001. Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. J. Protein Chem. 20: 191-201. https://doi.org/10.1023/A:1010954812955
  9. Guo, Y., H. Wang, and T. B. Ng. 2005. Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom Tricholoma giganteum. Peptides 26: 575-580. https://doi.org/10.1016/j.peptides.2004.11.009
  10. Kiiskinen, L. L., L. Viikari, and K. Kruus. 2002. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl. Microbiol. Biotechnol. 59: 198-204. https://doi.org/10.1007/s00253-002-1012-x
  11. Kim, J. H. and Y. S. Kim. 2001. Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci. Biotechnol. Biochem. 65: 356-362. https://doi.org/10.1271/bbb.65.356
  12. Kizuki, K., C. Moriwaki, Y. Hojima, and H. Moriya. 1976. Kinin inactivating enzyme from mushroom Tricholoma conglobatum. I. Purification and the sites of action on bradykinin molecule. Chem. Pharm. Bull. (Tokyo) 24: 1742-1748. https://doi.org/10.1248/cpb.24.1742
  13. Kojima, Y., Y. Tsukuda, Y. Kawai, A. Tsukamoto, J. Sugiura, M. Sakaino, and Y. Kita. 1990. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J. Biol. Chem. 265: 15224-15230.
  14. Laemmli, U. K. and M. Favre. 1973. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 80: 575-599. https://doi.org/10.1016/0022-2836(73)90198-8
  15. Lam, S. K., Q. F. Han, and T. B. Ng. 2009. Isolation and characterization of a lectin with potentially exploitable activities from caper (Capparis spinosa) seeds. Biosci. Rep. 29: 293-299. https://doi.org/10.1042/BSR20080110
  16. Lam, S. K. and T. B. Ng. 2009. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 16: 444-450. https://doi.org/10.1016/j.phymed.2008.09.006
  17. Lam, Y. W. and T. B. Ng. 2001. A monomeric mannose-binding lectin from inner shoots of the edible chive (Allium tuberosum). J. Protein Chem. 20: 361-366. https://doi.org/10.1023/A:1012224602848
  18. Liu, F., V. E. Ooi, W. K. Liu, and S. T. Chang. 1996. Immunomodulation and antitumor activity of polysaccharide-protein complex from the culture filtrates of a local edible mushroom, Tricholoma lobayense. Gen. Pharmacol. 27: 621-624. https://doi.org/10.1016/0306-3623(95)02058-6
  19. Marques, S. C. and R. M. Peralta. 2003. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J. Basic Microbiol. 43: 278-286. https://doi.org/10.1002/jobm.200390031
  20. Messerschmidt, A. and R. Huber. 1990. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur. J. Biochem. 187: 341-352. https://doi.org/10.1111/j.1432-1033.1990.tb15311.x
  21. Mizuno, T., T. Kinoshita, C. Zhuang, H. Ito, and Y. Mayuzumi. 1995. Antitumor-active heteroglycans from niohshimeji mushroom, Tricholoma giganteum. Biosci. Biotechnol. Biochem. 59: 568-571. https://doi.org/10.1271/bbb.59.568
  22. Nagai, M., M. Kawata, H. Watanabe, M. Ogawa, K. Saito, T. Takesawa, K. Kanda, and T. Sato. 2003. Important role of fungal intracellular laccase for melanin synthesis: Purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149: 2455-2462. https://doi.org/10.1099/mic.0.26414-0
  23. Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei. 2002. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335. https://doi.org/10.1007/s00253-002-1109-2
  24. Ng, T. B. and H. X. Wang. 2004. A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochem. Biophys. Res. Commun. 313: 37-41. https://doi.org/10.1016/j.bbrc.2003.11.087
  25. Palmieri, G., P. Giardina, L. Marzullo, B. Desiderio, G. Nitti, R. Cannio, and G. Sannia. 1993. Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 39: 632-636. https://doi.org/10.1007/BF00205066
  26. Perry, C. R., S. E. Matcham, D. A. Wood, and C. F. Thurston. 1993. The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J. Gen. Microbiol. 139: 171-178. https://doi.org/10.1099/00221287-139-1-171
  27. Quaratino, D., F. Federici, M. Petruccioli, M. Fenice, and A. D'Annibale. 2007. Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Antonie Van Leeuwenhoek 91: 57-69.
  28. Reinhammar, B. 1970. Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochim. Biophys. Acta 205: 35-47. https://doi.org/10.1016/0005-2728(70)90059-9
  29. Shin, K. S. and Y. J. Lee. 2000. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch. Biochem. Biophys. 384: 109-115. https://doi.org/10.1006/abbi.2000.2083
  30. Tsao, S. W., T. B. Ng, and H. W. Yeung. 1990. Toxicities of trichosanthin and alpha-momorcharin, abortifacient proteins from Chinese medicinal plants, on cultured tumor cell lines. Toxicon. 28: 1183-1192. https://doi.org/10.1016/0041-0101(90)90118-Q
  31. Ullrich, R., L. M. Huong, N. L. Dung, and M. Hofrichter. 2005. Laccase from the medicinal mushroom Agaricus blazei: Production, purification and characterization. Appl. Microbiol. Biotechnol 67: 357-363. https://doi.org/10.1007/s00253-004-1861-6
  32. Wang, H. X. and T. B. Ng. 2006. A laccase from the medicinal mushroom Ganoderma lucidum. Appl. Microbiol. Biotechnol. 72: 508-513. https://doi.org/10.1007/s00253-006-0314-9
  33. Wang, H. X. and T. B. Ng. 2004. Purification of a novel lowmolecular- mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem. Biophys. Res. Commun. 315: 450-454. https://doi.org/10.1016/j.bbrc.2004.01.064
  34. Wang, H. X. and T. B. Ng. 2006. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotechnol. 69: 521-525. https://doi.org/10.1007/s00253-005-0086-7
  35. Wang, H. X. and T. B. Ng. 2004. A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Biochem. Biophys. Res. Commun. 322: 17-21. https://doi.org/10.1016/j.bbrc.2004.07.075
  36. Wang, H. X. and T. B. Ng. 2004. A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus). Biochem. Biophys. Res. Commun. 319: 381-385. https://doi.org/10.1016/j.bbrc.2004.05.011
  37. Wang, H. X., T. B. Ng, V. E. Ooi, W. K. Liu, and S. T. Chang. 1996. A polysaccharide-peptide complex from cultured mycelia of the mushroom Tricholoma mongolicum with immunoenhancing and antitumor activities. Biochem. Cell Biol. 74: 95-100. https://doi.org/10.1139/o96-010
  38. Wang, H. X., T. B. Ng, W. K. Liu, V. E. Ooi, and S. T. Chang. 1995. Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int. J. Pept. Protein Res. 46: 508-513.
  39. Wang, H. X., W. K. Liu, T. B. Ng, V. E. Ooi, and S. T. Chang. 1996. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 31: 205-211. https://doi.org/10.1016/0162-3109(95)00049-6
  40. Wong, J. H., T. B. Ng, Y. Jiang, F. Liu, S. W. Chos, and K. Y. Zhang. 2009. Purification and characterization of a laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Pept. Lett. PMID 19807674

Cited by

  1. Bioactive proteins from mushrooms vol.29, pp.6, 2010, https://doi.org/10.1016/j.biotechadv.2011.05.003
  2. A laccase with anti-proliferative activity against tumor cells from a white root fungus Abortiporus biennis vol.46, pp.12, 2010, https://doi.org/10.1016/j.procbio.2011.09.020
  3. Purification and Characterization of a Novel Laccase from the Edible Mushroom Hericium coralloides vol.50, pp.1, 2010, https://doi.org/10.1007/s12275-012-1372-6
  4. A Laccase with HIV-1 Reverse Transcriptase Inhibitory Activity from the Broth of Mycelial Culture of the Mushroom Lentinus tigrinus vol.2012, pp.None, 2012, https://doi.org/10.1155/2012/536725
  5. A Laccase with Antiproliferative and HIV-I Reverse Transcriptase Inhibitory Activities from the Mycorrhizal Fungus Agaricus placomyces vol.2012, pp.None, 2012, https://doi.org/10.1155/2012/736472
  6. Improvement of Catalytic Efficiency, Thermo-stability and Dye Decolorization Capability of Pleurotus ostreatus IBL-02 laccase by Hydrophobic Sol Gel Entrapment vol.6, pp.None, 2010, https://doi.org/10.1186/1752-153x-6-110
  7. Freely-Suspended, Single Chamber Glucose Oxidase-Laccase Enzymatic Fuel Cell vol.512, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.512-515.1499
  8. Production of a Recombinant Laccase from Pichia pastoris and Biodegradation of Chlorpyrifos in a Laccase/Vanillin System vol.23, pp.6, 2010, https://doi.org/10.4014/jmb.1212.12057
  9. New Bioactive Fungal Molecules with High Antioxidant and Antimicrobial Capacity Isolated from Cerrena unicolor Idiophasic Cultures vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/497492
  10. Laccase and Laccase‐Mediated Systems in the Synthesis of Organic Compounds vol.356, pp.5, 2010, https://doi.org/10.1002/adsc.201300960
  11. A novel laccase with inhibitory activity towards HIV‐I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae vol.28, pp.4, 2010, https://doi.org/10.1002/bmc.3068
  12. Enzymatic Profiling of Wild Edible Mushrooms Consumed by the Ethnic Tribes of India vol.57, pp.2, 2010, https://doi.org/10.1007/s13765-013-4225-z
  13. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/417461
  14. Isolation, Purification and Characterization of Two Laccases from Carrot (Daucus carota L.) and Their Response to Abiotic and Metal Ions Stresses vol.34, pp.6, 2010, https://doi.org/10.1007/s10930-015-9639-5
  15. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation vol.33, pp.9, 2010, https://doi.org/10.1080/07391102.2014.975282
  16. Fungal proteinaceous compounds with multiple biological activities vol.100, pp.15, 2010, https://doi.org/10.1007/s00253-016-7671-9
  17. Purification and Characterization of a White Laccase with Pronounced Dye Decolorizing Ability and HIV-1 Reverse Transcriptase Inhibitory Activity from Lepista nuda vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040415
  18. The Influence of Biochemical Modification on the Properties of Adhesive Compounds vol.9, pp.1, 2017, https://doi.org/10.3390/polym9010009
  19. Kinetic analysis and structural studies of a high‐efficiency laccase from Cerrena sp. RSD 1 vol.8, pp.8, 2018, https://doi.org/10.1002/2211-5463.12459
  20. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms vol.20, pp.3, 2010, https://doi.org/10.2174/1389203719666180613090710
  21. Biomedical and Pharmaceutical-Related Applications of Laccases vol.21, pp.1, 2010, https://doi.org/10.2174/1389203720666191011105624
  22. A Fungal Ascorbate Oxidase with Unexpected Laccase Activity vol.21, pp.16, 2010, https://doi.org/10.3390/ijms21165754
  23. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1 vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5552088
  24. Purification and properties of a laccase from the mushroom Agaricus sinodeliciosus vol.68, pp.2, 2010, https://doi.org/10.1002/bab.1926
  25. Phytocatalytic and cytotoxic activity of the purified laccase from bled resin of Pistacia atlantica Desf. vol.176, pp.None, 2010, https://doi.org/10.1016/j.ijbiomac.2021.01.212
  26. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges vol.8, pp.1, 2010, https://doi.org/10.3390/jof8010023